

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST QUALITY AVAILABLE.

COPY FURNISHED CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

THE DIMENSIONALITY OF NATIONS PROJECT Department of Political Science University of Hawaii

Sponsored by
Advanced Research Projects Agency
ARPA Order No. 1063
Amend. No. 3

Approved for public release;
Distribution Unlimited

RESEARCH REPORT NO. 57

COMMUNIST CHINA'S FOREIGN BEHAVIOR:
AN APPLICATION OF FIELD THEORY MODEL II

Sang Woo Rhee

July 1971

This paper is a dissertation submitted to the Graduate School of the University of Hawaii in partial fulfillment of the requirements for the Doctor of Philosophy degree.

This research was supported by the Advanced Research Projects Agency of the Department of Defense and was monitored by ONR under Contract No. NOO014-67-A-0387-0003.

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U. S. Government.

This document has been approved for public release and sale; its distribution is unlimited and reproduction in whole or in part is permitted for any purpose of the United States Government.

BLANK PAGE

_U///	12 12 1	1	_					
	 Securit	١.	C	1.15	7	fic.	atten	•
								2

DOCUMENT CONTR Security of assistication of title, holy of abstract and indexing a		the overall tepon is classified)
1 OHIGINATING ACTIVITY (Corporate author)	Ja. REPORT	T SECURITY CLASSIFICATION
THE DIMENSIONALITY OF NATIONS	UN 26. GROUP	NCLASSIFIED
	20. 6400P	
3 REPORT TITLE		
COMMUNIST CHIMA'S FOREIGN BENAVIOR: AN AMMODEL II	PPLICATION OF FIELD	THEORY
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)		
Research Report No. 57		
5. AUTHOR(S) (First name, middle initial, last name)		
Sang-Woo Rhee		
REPORT DATE	78. TOTAL NO OF PAGES	7b. NO OF REFS
June 1, 1971	262	135
ARPA N00014-67-A-0387-0003	SE. ORIGINATOR'S REPORT N	NUMBER(5)
ARPA NUUU14-6/-A-U38/-UUU3	RESEARCH REPORT	io. 57
c.	96. OTHER REPORT NOIS) (A	ny other numbers that may be seeigned
	thie report)	
d.		
This document has been approved for public	n release and sale:	ita
distribution is unlimited and reproduction		
permitted for any purpose of the United S		 ,
11. SUPPLEMENTARY NOTES	12 SPONSORING MILITARY A	\C 1 \ \ (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2500 CAMPUS ROAD	ADVALCED RESEARCE	! PROJECTS AGENCY
HOMOLULU, HAWAII 96822	WASHINGTON, D.C.	
13-14119461	1	

This is a study of Communist China's contemporary foreign behavior patterns. The purpose of the research is to explain Communist China's system of foreign relations by examining her differences and similarities with each other nation.

Rummel's field theory guides this study. Applying this theory, a theoretical model of foreign behavior decision-making system was formulated. The research has focused on determining China's idiosyncratic systems of both perceptions of attribute distances and behavioral preferences.

The findings include the following: 1) Linear linkage between the attribute distances of the nations from China and China's behavior toward those nations, which was proposed by field theory, was found to exist within a satisfactory margin of error. 2) China's joint conflict behavior and trading behavior toward other nations is the function of the power distance between China and the object nation. 3) In general, attribute differences between China and other nations explain about fifty-three percent of the variation in China's foreign behavior toward them.

-	-					
_		FORM	• •	77	IDACE	11
4 1		FORM		1 4	(PAGE	, ,
			4		,	
_		INDVE		, ,		

UNCLASSIFIED

Security Classification

5/N 0101-807-6801

Security Classification

	KEY WORDS		LIN		LIN	K 9 .	LINK	
			ROLE	WT	ROLE	WT	ROLE	WT
China								
Enika Foreign Behav	ri oz		1	İ			1	
Field Theory	101	•	1	l	i i		}	1
Freid Incory	da-		}	ł			1	}
Factor Analys	11040		İ	j	Ì	ł		1
Canonical And Behavioral Pa	itysis		}		ł	1		1
Foreign Polity	cy Decision Making				į		1	1
roteign roil	y becision making		j	}		1	1	1
		•	1	1	1	j	1	j
			j	1	1	1	1)
				1 .		1	Ì	1
			1	1]		1	l
	,	•						1
			1	1		ł		
			í.					
	•		2					1
			,					1
			.					1
			1			1	1	
					1			
)			}		
			Ì					1
								1
		,		1			}	
						1		
	•							
		-						}
						1		
			i	l				
					1			
						1		
			į					1
								}
		•	1.		}	1		
				1	1	1		
				ŀ				
				1	}	1		1
								1
				ì	1	l		
						1		
	·							
		·						
						ł		
	•							
								ı

DD . PORM .. 1473 (BACK) (PAGE 2)

UNCLASSIFIED
Security Classification

To

Professor Han-Key Lee

who made me a scholar

and

Professor R. J. Rummel

who made me a political scientist.

COMMUNIST CHINA'S FOREIGN BEHAVIOR: AN APPLICATION OF FIELD THEORY MODEL II

By Sang Woo Rhee

A dissertation submitted to the Graduate Division of the University

of Hawaii in partial fulfillment of the requirements for the

degree of Doctor of Philosophy

ABSTRACT

This is a study of Communist China's contemporary foreign behavior patterns. The purpose of the research is to explain Communist China's system of foreign relations by examining her differences and similarities with each other nation.

Rummel's field theory, which states that "the behavior of one nation toward another is a linear transformation of their differences from each other on their attributes," guides this study. Applying this theory, a theoretical model of foreign behavior decision-making system was formulated. In the model, the objective attribute distances are related to the final behavior through perceptual framework and behavioral preference systems. First, the decision-makers of China perceive the relative distances of China from all other nations on various attributes through their own filtering system or unique perceptual framework. As a consequence, the same distances may be felt differ-

ently by Chinese decision-makers than by others. Second, when the Chinese decision-makers decide their behavior, the perceived distances are again modified by their idiosyncratic behavioral preference systems before they determine their final decision. Applying this model, the research has focused on determining China's idiosyncratic systems of both perceptions of attribute distances and behavioral preferences.

Data were collected on thirty-five attribute variables which measure the attribute distances of eighty-one nations from China and of seventeen behavioral variables which measured China's behavior vis-à-vis those nations for 1955 and 1963. Both matrices of data (attribute and behavioral) were factor-analyzed to get sets of basis dimensions of the two matrix spaces and the socres of the dimensions were used in the analysis.

The findings of the study include the following:

- 1) Linear linkages between the attribute distances of the nations from China and China's behavior toward those nations, which was proposed by field theory, was found to exist within a satisfactory margin of error. This finding strongly supports the validity of field theory.
- 2) China's foreign behavior patterns were delineated in the form of seven canonical structure equations, some of which say that
 - a. China's joint conflict behavior and trading behavior toward other nations is the function of the power distance between China and the object nation;
 - b. China's formal diplomacy is determined by the object's political orientation;

- c. China's political penetration was directed to world rural areas—underdeveloped, non-Communist agricultural areas where the Soviet influence is weak.
- 3) In general, attribute differences between China and other nations explain about fifty-three percent of the variation in China's foreign behavior toward them.

TABLE OF CONTENTS

ABSTRACT	••••••••••	iii
LIST OF TAH	Les	ix
LIST OF FIG	URES	xi
CHAPTER I	INTHODUCT: ON	1
1.1	Theoretical Perspective of This Study	5
1.2	Organization of This Paper	9
CHAPTER II	STUDIES ON COMMUNIST CHINA'S FOREIGN REHAVIOR	12
2.1	Non-Theoretical Studies on China's Foreign Behavior	18
2.2	Theoretical Studies on Communist China's Foreign Behavior.	21
CHAPTER III	RUMMEL'S SOCIAL FIELD THEORY: THE MODEL TO BE APPLIED.	29
3.1	World Conception of Field Theory	30
3.2	The Concept of a Field	34
	3.2.1 The Field Concept in Physics	34
	3.2.2 Lewin's Field Concept	37
	3.2.3 Wright's Field Concept	38
	3.2.4 Rummel's Field Concept	39
3.3	The Structure of Rummel's Social Field Theory: Seven Axioms	43
3.h	The Model of Field Theory	47
	3.4.1 The Basic Equation	49
	3.4.2 Field Theory Model I and Model II	5

i	Regression Model	55
3	3.4.4 Theoretical Implication of the Empirical Model	66
CHAPTER IV	RESFARCH DESIGN	68
4.1 7	The Bases of A- and B-Spaces	68
4.2	Factor Comparison	69
4.3	Multiple Regression Analysis	71
4.4	Canonical Regression Analysis	71
4.5	Test of Applicability of the Models	75
CHAPTER V V	ARIABLES AND DATA	80
5.1 1	The Population	80
5.2	Variables	80
9	5.2.1 Attribute Variables	83
9	5.2.2 Behavioral Variables	87
5.3	Missing Data Estimation	94
5.4	Data Transformation	95
CHAPTER VI	ATTRIBUTE DIMENSIONS	97
CHAPTER VII	CHINA'S FOREIGN BEHAVIOR DIMENSIONS	112
CHAPTER VIII	ASSESSMENT OF FIELD THEORY FOR CHINA'S BEHAVIOR	127
8.1	Test Results of the Multiple Regression Model	127
8.2	Test Results of the Canonical Regression Model	131
CHAPTER IX	PATTERNS OF CHINA'S FOREIGN BEHAVIOR	137
9.1	Power Interaction Pattern of China	140
9.2	Cold War Behavioral Pattern of China	158
9.3	Formal Diplomacy of Ching	168

9.4	Informal Diplomacy of China	177
9.5	Penetration Policy of China	184
9.6	Summary	188
CHAPTER X	RESULTS OF APPLICABILITY TESTS	190
10.1	Forecasting behavioral Scores with MRM	191
10.2	Forecasting Behavioral Scores with CRM	195
10.3	Forecasting Behavioral Pattern Scores with CRM	195
CHAPTER XI	CONCLUSION	202
REFERENCES		206
APPENDICES		
I-A	ORIGINAL DATA FOR NATION'S ATTRIBUTES, 1955 AND 1963	216
I-B	ORIGINAL DATA FOR CHINA'S FOREIGN BEHAVIOR, 1955 AND 1963	233
II-A	COMPARISON OF A-SPACE ROTATED FACTOR LOADINGS; ORIGINAL, TRANSFORMED, REDUCED, AND REDUCED AND TRANSFORMED DATA, 1955 AND 1963	241
II-B	COMPARTSON OF 5-SPACE ROTATED FACTOR LOADINGS; ORIGINAL, TRANSFORMED, REDUCED, AND REDUCED AND TRANSFORMED DATA, 1955 AND 1963	247
III-A	FACTOR SCORES OF FOURTEEN ROTATED A-SPACE BASIS DIMENSIONS, 1955 AND 1963	251
III-B	FACTOP SCORES OF SEVEN ROTATED B-SPACE BASIS DIMENSIONS, 1955 AND 1963	258

LIST OF TABLES

TABLE	PAG	E
1	LIST OF NATIONS	1
2	LIST OF ATTRIBUTE VARIABLES 8	8
3	LIST OF BEHAVIORAL VARIABLES 9	3
4	FACTOR LOADINGS OF THIRTY-FIVE A-SPACE VARIABLES ON FOURTEEN ROTATED BASIS DIMENSIONS	0
5	LABELS OF FOURTEEN A-SPACE BASIS DIMENSIONS 10	4
6-1	A-SPACE FACTOR PATTERN STABILITY AMONG DIFFERENT DATA SETS 10	6
6-2	A-SPACE FACTOR PATTERN STABILITY OVER TIME: FACTOR COMPARISON BETWEEN 1955 AND 1963 SPACES	7
7	A-SPACE FACTORS: COMPARISON WITH RUMMEL'S STUDY 10	9
8	FACTOR LOADINGS OF SEVENTEEN B-SPACE VARIABLES ON SEVEN ROTATED BASIS DIMENSIONS	3
9	LABELS OF SEVEN B-SPACE BASIS DIMENSIONS	5
10-1	B-SPACE FACTOR PATTERN STABILITY AMONG DIFFERENT DATA SETS 11	7
10-2	B-SPACE FACTOR PATTERN STABILITY: FACTOR COMPARISON BETWEEN 1955 AND 1963 SPACES	0
11-1	B-SPACE FACTORS: COMPARISON WITH RUMMEL'S STUDY ON USA 12	2
11-2	B-SPACE FACTORS: COMPARISON WITH RUMMEL'S STUDY, GLOBAL STUDY, 1955	5
11-3	B-SPACE FACTORS: COMPARISON WITH RUMMEL'S GLOBAL STUDY, 1963	6
12	TEST RESULT OF MULTIPLE REGRESSION MODEL: COMPARISON BETWEEN PREDICTED AND OBSERVED BEHAVIOR	0

13	TEST RESULTS OF CANONICAL REGE SION MODEL	132
14	TRACE CORRELATIONS OF CANONICAL ANALYSES 1955 AND 1963	135
15	CANONICAL STRUCTURE EQUATIONS FOR CHINA'S INTERACTION BEHAVIOR (NECOM + TRADE)	147
16	CANONICAL STRUCTURE EQUATIONS FOR CHINA'S COLD WAR BEHAVIOR (TPADE - NECCM)	161
17	CANONICAL STRUCTURE EQUATIONS FOR CHINA'S FORMAL DIPLOMACY	170
18	CANONICAL STRUCTURE EQUATIONS FOR CHINA'S NGO-COMEMBERSHIP	176
19	CANONICAL STRUCTURE EQUATIONS FOR CHINA'S INFORMAL DIPLOMACY	182
20	CANONICAL TRUCTURE EQUATIONS FOR CHINA'S PENETRATION POLICY (ECAID)	186
21	TEST RESULTS OF FORM ASTING 1963 BEHAVIORAL FACTOR SCORES WITH MULTIPLE REGRESSION MODEL	192
22	TEST RESULTS OF FORECASTING 1963 BEHAVIOR FACTOR SCORES WITH CANONICAL REGRESSION MODEL	193
23	TEST RESULTS OF FORECAS. ING 1963 BEHAVIOR PATTERN SCORES WITH CANONICAL REGRESSION MODEL.	194

LIST OF FIGURES

FIGURE	PA	GE
1	GEOMETRIC EXPRESSION OF THE BASIC EQUATION OF FIELD THEORY	52
2	GEOMETRIC ILLUSTRATION OF MRM (MULTIPLE REGRESSION MODEL) OF FIELD THEORY	5 7
3	GEOMETRIC ILLUSTRATION OF CRM (CANONICAL REGRESSION MODEL) OF FIELD THEORY	ú 1
4	RELATIONSHIP BETWEEN BEHAVIORAL PATTERN AND ITS COMPONENT BEHAVIORAL VECTORS	L42
5	CHINA'S JOINT BEHAVIOR OF NECOM + TRADE, 1955 (CANONICAL VARIATE SCORES)	լկկ
6	CHINA'S NECOM VS. POWER DISTANCE, 1955 (FACTOR SCORES) 1	L45
7	CHINA'S JOINT BEHAVIOR OF NECOM AND TRADE, 1963 (CANONICAL VARIATE SCORES)	149
8	CHINA'S COLD WAR BEHAVIOR (TRADE - NECOM) (CANONICAL VARIATE SCORES)	162
9	THE SCALE FOR COLD WAR PATTERN SCORE	L64
10	COLD WAR PATTERN (TRADE - NECOM) COMPARED TO INTERACTION PATTERN (NECOM + TRADE)	167
11	CHINA'S FORMAL DIPLOMACY (CANONICAL VARIATE SCORES)	174
12	CHINA'S FORMAL DIPLOMACY SCORES: FORECAST VS. OBSERVED	196
13	CHINA'S NEGATIVE COMMUNICATION SCORES: FORECAST VS. OBSERVED	197
14	CHINA'S NGO CO-MEMBERSHIP SCORES: FORECAST VS. OBSERVED	198
15	CHINA'S INTERACTION PATTERN: FORECAST VS. OBSERVED (PATTERN SCORES)	201

CHAPTER I

INTRODUCTION

China, long a "sleeping lion" of Asia, is now awakening. In the past twenty years, she has been transformed from a semi-colonized prey of the Powers to a formidable giant, with a well-organized population of eight hundred million and the largest army in the world Although economically, China is still a second-rate power, at best, how one can deny her influential position in the present international political arena.

On April 25, 1970, the Hsien-hua News Agency reported that the People's Republic of China had launched her first satellite into orbit on the previous day. The 173 kilogram "Mao's Moon" (so christened by an Italian newspaper) broadcasted the Chinese, semi-official national anthem, "The East is Red" for forty seconds, every five minutes, as it passed over the ninety capitals of the world. The satellite's impact on all nations will be great, not only because it implies China's approaching capability to build and use ICBM's, the formidable symbol

¹North, 1969, p. 22.

²The Chosen Ilbo, April 26, 1970, p. 1 and April 28, 1970, t. 3.

of the super power, but also because it dramatically demonstrates China's technical capability which, without doubt, will affect the patterns of her foreign behavior.

china's behavior has already had a strong impact on both her enemies and friends, and she will play an even greater role in international politics in the future. China is no longer a mere object of world politics. She is one of the powers which shape and lead it. The study of her foreign behavior is now one of the most needed in the field of international relations, for, without this knowledge, we can say little about world politics or world peace.

1.1 The Theoretical Perspective of This Study

The study presented here has two aims: First, the assessment of the validity of the major theme of Rummel's field theory, and second, the development of an empirically applicable general model of China's foreign behavior based on field theory. By "empirically applicable" I mean that the model generated will be operational in that the practitioners of world politics can utilize it directly to

³The Chinese have already exploded a missile-type H-bomb warhead. The first nuclear warhead carried by a guided missile was tested on October 27, 1966, which was her fourth test of a nuclear weapon (the first explosion was on October 16, 1964). For a detailed chronology of Chinese nuclear tests, see Yahuda, 1969, 198-9. *Time* (May 11, 1970, pp. 44-7) predicted that China would possess, at the latest, within 1970 at least some IRBMs with a range of 1,000 miles.

⁴The theory is still in the developing stage; parts of it, therefore, are continuously changing. However, the major theme of the theory (linear linkage between behavior and attribute difference) has been unchanged. Hereafter when field theory is referred to, if not specified otherwise, it means the one in Rummel, 1965.

get information about China's foreign behavior. By "general" I mean that the model should be applicable to any kind of behavior, at any point, in any circumstance and directed toward any object nation.

Most of the theories or models currently being developed in the field of international studies seem to be either so intricate as to defy operational definition, or so abstract as to relate to "world reality" in only the most remote way, or so specific to one aspect of national behavior as to lose general applicability. To be empirically applicable, in the above-mentioned sense of being useful to a practitioner, a theory or model should be general in scope, simple in form and operational in terms of measurable variables.

The major proposition of field theory is that "the behavior of one nation toward another is a linear transformation of their differences from each other on their attributes." Field theory is a general one applicable to all kinds of social units⁵ and to all kinds of behavior, and takes one simple form to describe the proposed linkage between a nation's behavior and her attribute differences from others. The linkage equation is, WQ = DP + U, where W is a set of behavioral vectors, D is a set of attribute differences, P and Q are weightings, and U is an error matrix.⁶ In this sense, the theory meets the first two of the three criteria of an empirically applicable model specified above: generality and simplicity.

⁵Rummel, 1969b, p. 10.

⁶This equation will be discussed in detail in Chapter 3.

The main statement of field theory, however, is in a highly abstract form saying that there are <u>linear relations</u> between a nation's behavior and her differences and similarities with each other nation. The theory itself does not specify which behavior is related to which difference nor how they are related. In other words, in the above matrix equation, P and Q are not "theorized" by the model itself. Therefore, the theory is "abstract" and is not, by itself, related to the real world directly. In order to make the model complete for a particular nation, we need to specify the values of P and Q. The purpose of this study is to test precisely an empirically applicable model derived from field theory for Communist China by giving fixed numbers to P and Q in the above equation.

Field theory is a theory in the sense that it includes a universal generalization, i.e., the statement that describes the relation between "the behavior of one nation toward another" and "their differences from each other on their attributes." The form of the relation is theorized as a "linear transformation." This propose ition is regarded as a law, i.e., the form of relations between behavior and the differences specified are theorized to be valid for any actor nation at any historical time point. A law remains a law insofar as the proposition is "corroborated" by experience. In other words, if the proposed statement withstands empirical tests and is not falsified by the test, it remains a law.

⁷See Popper, 1968, p. 33.

The first aim of this study was to test the validity of the statement of linear linkage between behavior and attribute differences with empirical data. If the proposed linear relationship were assessed by test results, i.e., it high correlations were obtained from a linear fit, the theory is valid for the moment.

The second aim of this study was to formulate an empirically applicable model for China's foreign behavior based on field theory. As mentioned above, in field theory, the form of the relationship between a nation's behavior and her differences from each other nation on attributes is defined in a general form, a linear transformation, and the actual concrete relationship is left undefined. To make an empirically applicable model out of field theory, then, we need to specify the exact form of the relationship in terms of concrete figures (parameters), i.e., to find the unique values of the P and Q matrices for China.

Pulling down the abstract field theory to a practically applicable model, however, required some preliminary work bridging the theory to world reality. First of all we needed to find empirically relevant meanings for P and Q within the context of field theory, since none were specified.

A nation's variation in foreign behavior can be analytically decomposed into two portions: one, universal behavioral natterns common across all nations; two, patterns attributable to that particular nation's idiosyncratic characteristics. To know the particular patterns, we must find the common universal patterns of

nations first, because the uniqueness of a nation's behavior is recognizable only when the universal patterns are understood.8

characteristics of a nation. To explain this form of behavior, therefore, we may ignore the nation's unique attributes. This pattern is just a reflection of the laws which govern all nations' behavior. For example, we can say that Nepal will not attack China militarity within the next few years. Our knowledge of the weak military capability of Nepal leads us to this judgment. This means that we implicitly apply a basic law that large discrepancies in military capability discourage a weak nation from initiating military attacks against a strong one. This law is believed to be valid for any pair of nations of the world regardless of the characteristics of the nations involved. If we could have a set of universal laws which govern the basic behavior of nations, then we could explain a great portion of the behavioral variations in nations.

Particular patterns of a nation's behavior can be viewed as deviations from the universal ones. This means that the universal behavioral pattern is modified by a nation's idiosyncratic decision-making system. For example, each nation has her own perceptual framework, and when she makes her foreign policy decision, this specific framework may emphasize a certain factor among various components which compose her decision-making environment. For instance,

⁸See A. Kaplan, 1964, p. 117. He stated, "differences are understood and explained only by reference somewhere to similarities: how we conceive of an individual is the product of generalizations."

we can say that it is probable that Egypt will cooperate with Syria in a certain common-market-type economic organization, but no one will think of a similar cooperative effort between Israel and Egypt. Why? We know that mutual economic necessity and geographic proximity as well as historical amity induce economic cooperation between nations (let us suppose that it is a universal law). In the case of Israel and Egypt, Israel probably has a unique perceptual framework which puts special emphasis on their religious-cultural differences (the historical antagonism factor) and, as a consequence, this unique decision-making pattern makes her behavior an exception to the universal law of proximity and mutual necessity in her economic cooperative behavior.

In this vein, we can say that in order to understant a nation's foreign behavior patterns, first we need to uncover the basic laws of behavior of all nations in general that underlie those patterns.

Then, with the knowledge of these laws, we can proceed to delineate a particular nation's specific patterns of foreign behavior.

With this bifurcation of a nation's variation of behavior in mind, let us have a closer look at Rummel's field theory.

Rummel's social field theory, based on a field concept of world reality, 9 defines the forms of relationship between the behavior of a nation and her environmental conditions in rigorous mathematical functions, stating that, "[a nation's] behavior [toward another nation]

⁹In Chapter 3, this will be discussed in detail.

is the consequence of the total social situation, and this situation forms a field consisting of social characteristics, or attributes. Behavior is relative ... to the relative similarities and differences of nations on their attributes ... behavior is a linear function of the relative location of the two [interacting nations] in the system of attributes"

More simply, "the behavior of one nation toward another is a linear transformation of their differences from each other on their attributes."

As a whole, this provides us with one basic universal law applicable to all nations.

As mentioned above, in order to understand China's unique patterns of foreign behavior, we need to know both the universal theory (a set of laws) underlying that behavior and the unique decision-making system idiosyncratic to China which modifies the universal laws. Since Rummel's social field theory tells us the basic relations between China's behavior and her attribute distances, what remains to be done is to define the specific decisional framework which would cause China to deviate from the universal behavior patterns of nations.

Within field theory, the weighting parameters, P and Q, in the equation may be interpreted as the actor's perceptual and behavioral framework, respectively. In reality, we can see that the same attribute distance is perceived differently by the decision-makers of different nations depending upon their personal experiences, belief

¹⁰Rummel, 1965, p. 183.

¹¹Rummel, 1969c, p. 2.

system, educational background, political value orientation, etc. For example, India may perceive religious distance from other nations to be more significant than does China who pays little attention to them. And even if they perceive attribute distances in the same way, the various decision-makers may respond differently according to their unique behavioral framework (or decision criteria). China, for instance, will probably adopt economic aid instead of military maneuvers in solving border disputes with small nations like Burma, if China's leadership has a special preference for non-violent solutions, even though the military solution may be more expedient. In this case, China has a unique pattern of behavioral choice which constitutes a particular behavioral framework. In this sense, I will call this model the "double subjective modification system" of a nation's foreign behavior. In brief, we can formulate an empirically applicable model for a nation's foreign behavior by inserting actual figures for P and Q which represent the nation's unique decisional framework. Methodologically, then, the second aim of this research was to determine the stable values of these two parameters of Rummel's model by its application to empirically collected data on China.

1.2 The Organization of This Paper

This paper is organized as follows. In Chapter II, past studies about Communist China's foreign behavior are examined with special emphasis on theories that have been applied to explain Chinese foreign behavior. In Chapter III, the model to be applied--Rummel's social field theory Model II--is presented and discussed in detail. The

discussion focuses on clarifying the meaning of the fundamental equation of the theory. The differences between the multiple regression model and the canonical regression model is especially scrutinized. In Chapter IV, the research design is presented, and variables and data used for this study are discussed in Chapter V.

From Chapter VI to Chapter X, the results of the analyses are given. In Chapter VI and VII, the basis dimensions of Attribute space and Behavior space are presented, respectively, and in Chapter VIII the results of testing field theory are given. In Chapter IX, China's foreign behavior patterns are discussed, and five different behavior patterns are illustrated in each of five sections; and in the sixth section, findings about China's foreign behavior patterns are summarized. In Chapter X, the results of testing the model's applicability are given. And, finally, we have the conclusion in Chapter XI.

In this study, data were collected on measures of attribute distances and China's behavior toward all nations for 1955 and 1963. Thirty-five variables for attribute distances and seventeen behavioral variables have been selected, most from the variable list used by the Dimensionality of Nations Project. Some variables, however, have been added to cope with China's unique perception and behavior, such as the percentage of overseas Chinese in the counterpart nation's population and Chinese attitude toward other nations reflected in the Jen-min Jih-pao. In this study all nations are included as objects of China's foreign behavior.

In order to make the points of the discussion and test results more comprehensible, virtually all of the test results are illustrated in twenty-seven tables and fifteen figures. In the appendix, raw data are presented to allow anyone to test the arguments I have made in this paper.

In order to make the test reliable, each step of the analysis was repeated four times; the first with the original data, the second with a reduced number of object nations, the third with the skewed variables transformed and the fourth with the reduced and transformed data matrices.

CHAPTER II

STUDIES ON COMMUNIST CHINA'S FOREIGN BEHAVIOR

In comparison with other areas of international relations, the study of China remains neglected and underdeveloped. Considering her extraordinary size and her potential role in the future course of history, we may say that the study of China has been "retarded" in development. A simple check of the articles reported in several leading American professional journals manifests the symptoms of this retardation.

First, in quantity, the number of articles written about China's foreign behavior was extremely small compared to other fields and regions. For example, in World Politics, a quarterly journal of international relations in general, out of a total of 748 articles printed in the past twenty-one years (from Vol. 1 to Vol. 21), only five were related to China's foreign behavior (twenty-eight articles were about China). The American Political Science Review was more extreme. It allocated space for only one article about China's foreign behavior out of 774 articles contained in the last twenty volumes (eight articles were about China in general). The Journal of Asian Studies is an area-specific professional journal. Even this Asia-major journal has

¹²The expression, "retarded," was used by Howard Boorman. See Boorman, 1960.

devoted less than one percent of its space to the study of Chinese foreign behavior.

Secondly, even among the scarce studies of Communist China's foreign behavior, most were purely descriptive works. Of the nine articles reported in the four journals above (a total of seventy-three volumes), only two can be regarded as theoretical attempts to explain or predict China's foreign behavior patterns. These facts imply that either there have been relatively few publishable works on China's foreign behavior, or most American political scientists were not interested in the topic.

Johnson has captured well the current 'state of the art':

"social science analysis has neither staged a 'take-off', nor begun

'the drive to maturity' ... in fact, in my opinion social science has

yet to achieve 'the preconditions for take-off' from which it can

begin to theorize about China "14"

The theoretical retardation of China studies can be illustrated in a number of ways. For example, we have studies of Communist China's military policy based on general Communist foreign policy objectives without any agreement on what those objectives actually are (e.g., Bobrow, 1964). Or without examining the fundamental relationship

¹³These two are Smoker (1969) and Bobrow (1964). Note that this number refers only to the four journals examined. Recently, more books and articles have been published. For example, in 1967 alone, 17 books and 331 articles were reported in the Bibliography of Asian Studies. This is a worldwide publication list.

¹⁴Johnson, 1965, p. 256.

between the basic ecological situation of a nation and a nation's behavior, some have tried to explain China's foreign behavior based only upon the top decision-makers' ideological attributes (Tang Tsou, 1965). As discussed above, a top decision-maker's political orientation and/or Weltanschauung may formulate a unique perceptual or behavioral framework which modifies the basic laws governing the relationship between nations, but it alone cannot be a sufficient explanatory factor of a nation's foreign behavior. In fact, we may say that Mao's revolutionary strategy itself was a reflection of his perception of the ecological situation of Communist China in the past.

Many reasons for this retardation have been given. For example,
Dorrill gave the following: 1) lack of available data, 2) inaccessibility to China (both physically and through the communication media),
3) language gap, and 4) a socio-politico system different from the
Western world (Dorrill, 1964). But the basic reason is more likely
the paucity of theoretical models applicable to the study of a nation's
external behavior in general. 15

¹⁵For a taxonomic inventory of the theories in international relations, see Phillips (1969). If we classify existing theories by the analytical tools employed, we have the following seven kinds (some examples are given in parentheses): 1) descriptive statistics (Singer and Small, 1966; McClelland, 1967; North, Holsti and Brody, 1967), 2) inferential statistics (Brody, 1963; Haas, 1965; Zinnes, 1967), 3) probability theory (Richardson, 1960a; Horvath, 1963, 1967), 4) calculus (Richardson, 1960b), 5) topology (Lewin, 1951; this is a psychological work, but general enough to be applied in international relations), 6) linear algebra-graph theory (Harary, 1961; Brams, 1968), 7) linear algebra-factor analysis (Cattell, 1949; Alker, 1964; Rummel, 1965; Gregg and Banks, 1965; Tanter, 1966; Russett, 1967; Denton and Phillips, 1968).

This lack of theories, however, is not unique to the study of international relations. It is, to some extent, a common problem of the social sciences in general.

One of the functions of theory in the study of international relations, as in any field in the social sciences, is the organizing function (McClelland, 1966, p. 15, and Deutsch, 1966, p. 8). This means, as McClelland stated, that "theory orients knowledge by furnishing the means to put the pieces together." According to Thompson, "theory gives order and meaning to a mass of phenomena without which it would remain disconnected and unintelligible" (Thompson, 1955, p. 735). Without theory, therefore, a mere description of a situation is difficult, since we cannot decide which data are most worth getting.

Social reality is too complex to be described in full detail in all its aspects. This means that selection is of the essence. Theory "establishes relative priorities for further inquiries by establishing the criteria of significance" (McClelland, 1966, p. 15). Theory guides us as to what to look at, and what to describe. Therefore, theory is essential even in the description of a situation or a phenomenon.

For explanation of a certain behavior, theory is even more essential. To explain, in a broad sense, means to "make something intelligible or comprehensible" and "the aim of explanation is the reconciliation with our intellectual desires of the perceptions forced on us by the external world of nature" (A. Kaplan, 1964, p. 33). Then what is the actual process of explanation? Hempel and Oppenheim described it in the following way: "an event is explained

by subsuming it under general laws, i.e., by showing that it occurred in accordance with those laws, by virtue of the realization of certain antecedent conditions ... the explanation of a general regularity consists in subsuming it under another, more comprehensive regularity, under a more general law." ¹⁶ Therefore, explaining a nation's behavior means to discover laws governing recurring regularities in observable behavior. And a theory, which includes empirically testable statements of lawlike generalizations, ¹⁷ can serve as a guide in seeking the underlying laws of behavior.

For a prediction, the function of a theory is the same as for an explanation, since "the logical structure of scientific explanation is identical with that of a scientific prediction, the only difference between them being the purely pragmatic one of the temporal vantage point of inquirer." In the case of an explanation, we are seeking the conditions and a lawlike statement for the existing event; while in prediction we seek an event on the bases of existing conditions and a known lawlike statement. Since the theoretical structure of an

¹⁶Hempel and Oppenheim, 1968, ch. 15.

¹⁷Rudner (1966, p. 10): "A theory is a systematically related set of statements, including some lawlike generalizations, that is empirically testable."

¹⁸Rudner, *ibid.*, p. 60. He viewed the structure of explanation as the following: "The formal structure of a scientific explanation of some specific event has three parts: first, a statement E describing the specific event to be explained; second, a set of statements C₁ to C_n describing specific relevant circumstances that are antecedent to, of otherwise causally correlated with the event described by E; third, a set of lawlike statements L₁ to L_n, universal generalizations whose import is roughly, 'Whenever events of the kind described by C₁ through C_n take place, then an event of the kind described by E takes place.'"

explanation and a prediction are identical, "we have an explanation for an event if, and only if, we could have predicted it."

If we can agree that the final goal of academic enterprise in international relations, as well as in other fields, is to understand and explain (thus predict) empirical phenomena or events occurring within the system concerned (Deutsch, 1968, p. 7), then a theory about the pattern of behavior to be studied must be formulated first. Then we can collect data (where the theory provides the selection criteria), and with the data, test the validity of the theory. If the theory is inadequate, it must be revised. We should then, as Deutsch stated, "re-examine concepts, methods, and interest and should search for new symbolic models (theories) and/or new strategies in selecting the major targets for the next attack" (Deutsch, 1963, pp. 3-4). Then with the revised theory, we should again repeat the above stages.

If we view the process of social science research in this way, what stage has the study of Communist China reached at present?

Johnson aptly answered this question, "much of the work already done on Chinese communism has been in the nature of intelligence-collecting rather than social science research. This is neither surprising nor bad in itself, but intelligence compilation is not social science.

(The major potential contribution of social science is its capacity to provide for systemic thinking about the nature of Chinese Communist society and politics.)"

"Without the systematic application of social science theory to Chinese data, intelligence will provide only the most superficial aids to understanding China ... we must have theory-specific studies of

Chinese politics (behavior) in order to use even the data that we now possess and in order to generate newer and better theories" (Johnson, 1965, p. 258).

Let us examine briefly an inventory of past China studies. In the first section, non-theoretical descriptive studies will be examined and in the latter section, some theory-oriented studies will be discussed.

2.1 Non-theoretical Studies on Communist China's Foreign Behavior

Among the scarce studies which dealt with China's foreign behavior, most were non-theoretical and dealt with China's relations with particular nations. Levi's "Nepal in World Politics" (1957), Hinton's China's Relations with Burma and Vietnam (1968), Fairbank's The United States and China (1958), Leng's Japan and Communist China (1958), and North's Moscow and Chinese Communists (1953) are some examples.

Though the main sources adopted for explanation differed among each of the studies (domestic condition, historical relations, China's traditional expansionism, etc.), one common thread appeared throughout: the emphasis was on the unique context within which China and a particular nations ought to behave. These kinds of studies are very helpful for grasping the uniqueness of the relations between that particular pair of nations. But, considering that uniqueness can be understood only when the common patterns are recognized by adopting some theoretical model, a mere description of interactions between the

two nations (China and her counterpart) does not provide us with a comprehensive picture of the situation.

Even though few in number, there are some fine general discussions of Communist China's foreign behavior as a whole. Barnett's Communist China and Asia (1960), Hinton's Communist China in World Politics (1966), Histon's Communist China's Strategy in the Nuclear Era (1962), and Levi's Modern China's Foreign Policy (1953) are examples.

One obvious characteristic about the above studies is that they did not formulate or apply any "theory" explicitly and consistently.

This lack of theory made the generalizability of their findings significantly limited, and the abundant information they gathered could not contribute directly to succeeding research.

theory saying that "I proceed on the basis of no general theory or political action: I find most such theories vague and pretentious ... Nor do I employ any unique or complex method based on some such general point of departure. I prefer history ... If there is a master key, it is context and educated intuition" (1966, preface viii, underlining added).

One common characteristic of the explanatory schedule of these non-theoretical, general studies was that common sense and human intuition served as the foundation of understanding. They all described in full detail the contextual situation under which Communist China decides her foreign behavior, by using such historically well known concepts as motivation, national goal, ideology and national

power as a working framework. Then implicitly relying on the reader's intuitive logic, they tried to connect the contextual situation and China's decisions. In a rough sense, therefore, they also use a crude form of theory about human behavior (e.g., under a specific circumstance, all men are expected to behave in such ways," etc.), while expressedly denying them.

Hinton, for example, denied theories. Nevertheless, his suggested five "roots of Communist China's foreign policy" (the traditional superiority complex, historical anti-Western attitude, backwardness in economic and social development, ideological and political support from the Soviet Union and Maoism ideology¹⁹), with which he explained China's foreign policy, were all based on social scientific theories (e.g. psychological attitude theory, economic theory, linkage theory, ²⁰ etc.); though these theories were not explicitly referred to, they were assumed implicitly.

In general, the problems of non-theoretical studies can be summarized in two points. First, without theoretical construction, the generalizability of the explanation is reduced. Without a bridge of common theory, we cannot apply the findings generated from one

¹⁹Hinton, 1966, Part One, section 1, pp. 3-22.

²⁰A linkage theory is a theory that postulates the form of the relationship between domestic political process of a nation and her outside environmental or political phenomena. Since the time when Rosenau suggested the necessity of developing linkage theories in 1966, there have been several attempts to develop theories within the conceptual framework of the linkage idea, but not rigorous theory has yet been developed. For the conceptual framework, see Rosenau, 1969, Chapter 3, and for the examples of theorizing attempts, see Chapters 4-12.

study to another. Furthermore, without theory, we cannot compare the the results of one study with those of other similar studies, since we do not have any common frame.

Second, without theory, we cannot "explain" and "predict" behavior scientifically, since the logical structure of explanation presupposes a theory. Besides theory, we have some other explanatory schemes like the metaphor and the analogy. Metaphors, for example, are important aids for explanation, since they may make the reader have the experience of "understanding." But a "metaphorical model cannot be expected to yield logically compelling theorems which are translatable into prediction."21

2.2 Theoretical Studies on Communist China's Foreign Behavior

Recently (since 1960), theoretical studies about China's foreign behavior began to appear either as a part of a global study, or as an independent one. But again most deal with China's behavior toward one or a few particular nations. Zagoria (1962), Greaser (1966), Bobrow (1965), McClelland, et al. (1967), Sullivan (1964), Zaninovich (1964), Smoker (1969) are some examples.

Although limited in both scope and the number of nations involved, their contribution to the knowledge of China's foreign behavior is significant. For example, McClelland's study (McClelland, et al., 1967) was limited geographically (Quemoy and Tachen Islands),

²¹Rapoport, 1958, p. 51.

in time (1950-1964), and in the number of nations involved (Communist China, Nationalist China, U.S.A. and U.S.S.R.). The type of behavior was also restricted to political-military action in regard to limited confrontations. With these restrictions, however, they determined some basic patterns of Communist China's crises and non-crises behavior in general with consistency and repetition of behavioral forms over time (p. 3). Thus this finding could serve as a model for dealing with China's behavior under similar conditions.

Sullivan's (1964) study was similar to McClelland's. Starting his research with a general hypothesis that "certain types of societies will tend to routinize their behavior after a crisis and a relationship of stability will be restored," he tried to discover the interaction patterns of China vis-à-vis other nations and the changes in these patterns during and after crises periods. Again, with this kind of theoretical approach, Sullivan contributes knowledge which can be applied to other studies.

Zaninovich's study of the Sino-Soviet dispute was to analyze the interaction patterns of the two nations applying the "mediated stimulus-response model," a kind of behavioral model of the relation-ship between behavioral stimulus and perceptual response. Again, this research, though it deals with only one dyadic relation, could contribute to the knowledge of China's interaction pattern (or of any nation's pattern), because the theory tested was general and applicable to any pair of nations.

Bobrow's studies were especially highly sophisticated and innovative. His basic theoretical stance on a nation's international behavior has been that international behavior is the product of an interaction between action and situation attributes. (This is inferred from his four articles: 1964, 1965, 1967, 1969b). From this basic notion he tried to establish a working model that would depict China's own behavioral system in response to the situation she encounters.

In "Chinese Communist Response to Alternative U.S. Active and Passive Defense Postures" (1965), Bobrow, guided by a further assumption that "the Chinese act on the basis of what they believe to be reality" (p. 2) tried to build a psychological theory applicable to China's responsive pattern to changing American policy toward her. Thus, he contributed significantly to the advancement of analytic studies of Chinese foreign policy, though he dealt with only particular dyad, i.e., China vs. U.S.A.

There have been very few theoretical works which explain the overall pattern of Communist China's foreign behavior. Among China's foreign behavior literature, the single title which fell into this category was Bobrow's "Ecology of International Games: Requirement for a Model of the International System" (1969). What Bobrow attempted was to build a new theoretical model of a nation's overall behavior pattern, and to test the model with China data. After examining all current theoretical approaches, namely, the system, actor and situation approaches, Bobrow argued that we must incorporate the powerful contributions of all three. He further suggested the new models have to be ones of the interaction of actor games and encountered situa-

tions, and finally formulated a theoretical model called "a game ecology-situation module."

With this theory, he experimented with observed data to discover the "ecology of international games in which Communist China is engaged" (p. 14). Methodologically, he factor analyzed China's action data to delineate the "structure of China's action space" and then searched for the extent of association between these activity factors and the universe of political actors. He, however, did not theorize the association. He simply tried to discover empirically regular patterns of association between the actor factors and the types of ecology. In this sense, his study may be regarded as a precursor of theoretical research on China's foreign behavior, but not as a real theoretical study itself.

There were some studies based on some pre-theories, however. By "pre-theory," I mean a conceptual framework which includes one or more lawlike generalizations, but without any specified relationship among variables. "Pre-theoretical" studies are different from non-theoretical studies, since they are guided by an explicitly adopted "theory."²² However, they differ from the rigorous theoretical

²²When I listed some non-theoretical studies, I mentioned that we could find some underlying pre-theories. But in their case, theories were not explicitly nor consistently adopted by the authors. In the pre-theoretical studies, however, theories were explicitly and consistently referred to.

studies, since their "theories" lack certain essential qualities. 23

In this group of studies, I put Halperin and Perkins (1965), North (1969), Scalapino (1963), and an earlier work of Bobrow (1964). Halperin and Perkins (1965), for example, used a "theory" based on the concepts of "national interest" and "ideology." To infer Chinese national interest and ideology, they manipulated a selected array of variables, "relevant political, ideological, economic, technological, military and cultural factors, as well as predisposing historical and traditional influences," 24 though the variables were not fully clarified in the main text.

Among all the studies in this group, North's (1969) is most prominent. In his introduction to The Foreign Relations of China, an undergraduate textbook, North clarified his theoretical perspective. Starting with assumptions of multicausality, he suggested three basic explanatory concepts with which a nation's foreign behavior is analyzed: capability, political leadership, and political culture and institution. Then, he intended to "show, insofar as possible, how they [the concepts] related to each other and how they combine to account for extensive aspects of Communist China's international activities" (pp. 2-3). Especially in the discus-

²³To be a theory, a conceptual framework should have at least one lawlike, generalizable statement constructed in terms of concepts which are measurable and empirically testable. See Rudner, 1966, p. 10; A. Kaplan, 1964, pp. 294-8; and McClelland, 1966, pp. 6-16.

²⁴See Lindbeck's foreword of the book.

sion of the dynamic aspects of a nation's foreign behavior, he tried to apply basic notions of status theory (disparity of actual power status and desired status) and of the power transition theory (the relations between new challenging power and the old powers). As a whole, his thinking provided us with an invaluable theoretical framework for foreign behavior study, although he did not propose a rigorous theory.

Bobrow's study on China's military foreign behavior (Bobrow, 1964) is also a good example. To set forth the "calculus or rationale which Peking employs to select military strategy and tactics," Bobrow employed a well-known traditional conceptual framework composed of such concepts as national goal, domestic requirements, etc. Under the assumption that "Peking's leaders adopt what they believe to be the best available military policy to cope with what they perceive to be challenges of foreign opponents, to attain their foreign ambitions, and to satisfy domestic political and economic needs,"25 Bobrow tried to analyze four components of China's military calculus: expectations regarding the United States, foreign goals, domestic requirements, and interpretations of previous military experience.

²⁵Notice that this assumption, itself, is a kind of theory, a mixture of a stimulus-response type interaction theory and a theory based on rationalism.

From the brief review above, we may conclude that "social science has yet to achieve the preconditions for take-off from which it can begin to theorize about China." 26 To proceed, therefore, we must have more theory-specific studies of China's foreign behavior. As discussed before, studies without theories have only limited utility to describe the present and predict the future nature of Chinese behavior and its determinant. Some "fundamental restructureing and innovation in our tools of concept and method are required to improve our description and predictive capabilities." 27

Then, practically, what should be done? Bobrow suggested the following: 28 "Wise selection of nations trait variables and careful collection of information about China and other nations for those variables [should be carried out] to increase our ability to

1) measure the extent and direction of differences between national traits at different times; 2) establish empirically the extent to which China tends to cluster near to (be similar to) or far from (be different from) other nations; 3) assess the descriptive utility of alternative conceptual typologies and the limits of their applicability; 4) test hypotheses about the statistical co-occurrence of particular traits of nations; 5) determine the nature of the relationship between national traits (input variables to national élite

²⁶Johnson, op. cit., p. 256.

²⁷Bobrow, 1967, p. 306.

²⁸Bobrow, *Ibid.*, p. 309.

decisions); and national policies (output variables form national élite decisions); and 6) on the basis of analyses of this fifth type select hypotheses about the reasons for policy choices."

I can agree with all these suggestions. What I intended to do in this research was to theorize China's foreign behavior and to select basic indicator variables with which we can explain and predict such behavior. My grand design has been to provide a stepping stone between the present "pre-conditions for take-off" and the future "take-off" stage in studies of China's foreign behavior.

CHAPTER III

RUMMEL'S SOCIAL FIELD THEORY: THE MODEL TO BE APPLIED

Philosophically, Rummel's social field theory is based on the concept of the world as a field. Rummel views social reality as "a field consisting of the attributes of social units and their interactions. Attributes are those characteristics by which a social unit can be differentiated from all other social units. The behavior that social units direct toward each other are their interactions (Rummel, 1968a, p. 26)."

Theoretically, Rummel's social field theory is rigorously structured. Based on seven well formulated axioms, it postulates a law which defines the form of interrelationship between the behavior of a social unit and the relative attribute differences of that social unit from others. The heart of the theory is the basic mathematical equation representing the model of the relations defined by the above law. The analytic system employed is linear algebra, and many constructs in the theory are expressed in terms of linear algebraic concepts.

In the first section of this chapter (3.1), the conception of social reality that underlies field theory will be discussed briefly in conjunction with some other basic world views. In section 3.2, I shall discuss the concept of a "field," the core concept of field theory, reviewing its various applications in order to exemplify the philosophical background of the theory. In section 3.3, the theoret-

ical structure of Rummel's field theory will be elaborated on. Then, in section 3.4, the basic equation of the theory will be presented.

3.1 The World Conception of Field Theory

Social laws are universal generalizations of relationships between two or more phenomena. 29 Therefore, social laws cannot be empirically "discovered," since empirical observations cannot exhaust all possible relationships and a universal generalization, therefore, is impossible. Also, a mere summarization of observational findings does not provide the logical nexus among phenomena. 30 Laws must be "formulated." "Guided by his knowledge of observational data, the scientist has to invent a set of concepts—theoretical constructs (which will provide the necessary logical nexus between phenomena)." 31 In this sense, laws are products of the scientist's intuition and, as a result, there are no absolute laws. Laws remain as laws insofar as they serve to explain observable phenomena. Therefore, laws are,

²⁹A formal definition of social laws may be given as "statements or equations that will explain or state the form of a relationship between terms in the analytic system." A. Kaplan distinguishes laws from other scientific statements, calling laws "truly universal nomological generalizations, unrestricted as to space and time." (A. Kaplan, 1964, p. 91).

³⁰ See Hempel, 1952, p. 19. See also Popper, 1968, p. 27.

"... it is far from obvious, from a logical point of view, that we are justified in inferring universal statements from singular ones, no matter how numerous; for any conclusions drawn in this way may always turn out to be false: no matter how many instances of white swans we may have observed, this does not justify the conclusions that all swans are white."

³¹ log. cit.

inevitably, reflections of the scientist's conception of social reality.

Historically, the reality³² of international relations has been understood in many different ways. For example, ancient Confucianists in China believed that there exists a perfect universal order (tien-li, i.e., Heaven's will), and actual politics (both domestic and international) are the processes of the realization of that order. 33 Later in Western society, Hegel took a similar position about the reality of international relations. He believed that "reason is the substance of the universe... the design of the world is absolute rational." Hegel thought change and motion (which are supposed to have a predetermined pattern) as the only reality and tried to "identify this reality with the historical process of continuous building and becoming." 35

³²For the usage of the term, "reality," see Wright, 1955, p. 11. He states that "I believe it [reality] is commonly used by scientists, to designate existence in time and space apart from any observer, assuming without argument that time and space are characteristics of a world which exists apart from the observer."

³³See Lee, 1966, pp. 341-60. The Confucianist concept of the world was well illustrated in *The Chung-pung*, one of the *Four Great Books*.

³⁴Hegel, Philosophy of History, Bohn (ed.), pp. 9-13, quoted in Durant, 1953, p. 224.

³⁵Wright, 1955, p. 10.

If we conceive of world reality as a planned process 36 as the Confucianists and Hegel, we need not pay great attention to the outside environment of a nation in order to explain and predict its foreign behavior. We need to study history (Hegel) or natural laws through introspection (Confucianists) to identify the "inevitable progress" of civilization to explain changes in a nation's foreign behavior as well as other social and political changes.

Currently for Morgenthau, reality in international relations is "power politics," which "is governed by <u>objective laws</u> that have their roots in human nature (unchangeable), ... statesmen think and act in terms of interest defined as power."³⁷

He assumed that, first, states are entitled to exist, and, second, to preserve their independent identities, states can rely only upon power to avoid conquest by their neighbors. Consequently, the struggle of each to be more powerful than any probable enemy is natural. To Morgenthau, the reality of international relations is the struggle of nations for power, and the mechanics of social equilibrium is the core concept describing the process of this struggling reality. Thus, Morgenthau's belief in power politics is based on

Journal of the world as an equilibrium, the world as an organization, the world as a community, and the world as a field. According to this classification, the above examples of Hegel and the Confucianists belong to 'the world as a plan,' while Morgenthau's (see next paragraph) belongs to 'the world as an equilibrium.' For further discussion, see Wright, ibid., pp. 485 and 488.

³⁷Morgenthau, 1966, pp. 4-5.

¹⁸ See Morgenthau, ibid., pp. 162-163.

his concept of the world as an equilibrium, and to him international relations is a simple mechanical system, changing along with the varying power distribution on each side of the antagonistic groups to maintain the balance of power. To him, therefore, "calculations of the aggressive and resisting power of each and the distances and barriers which separated them might sufficiently determine the stability of the system ... and social, moral, and ideological factors might be safely disregarded. The

Departing from these simple mechanistic views of reality in international relations, Wright tried to view the world as "a field of conditions, values, ideals, and attitudes, in contiguous flux ... exerting influence upon the actions of individuals, associations, and nations." According to him, the behavior of human beings is conditional on their environmental situation, and discovering the forms of relations between specific patterns of environmental conditions and patterns of the actor's behavior is essential in order to explain and predict the behavior.

Rummel's field theory is based on such a view of world reality.

Behavior is believed to be the consequence of the total social

³⁹Loc. cit.

⁴⁰Wright, 1955, p. 488.

[&]quot;IWright, ibid., p. 199.

situation which forms a field consisting of social characteristics, or attributes. The above is consonant with my concept of a nation as an organic system composed of systematically related roles played by human beings, where its foreign behavior is the reflection of the decisions made by the top decision-makers of the nation system. And I think that it is likely that there are laws that specify the forms of relationship between patterns of decisions (therefore, the behavior) and the patterns of environmental conditions including the personal psychology of decision-makers, the nation's attributes, and the relative similarities and differences with the other nations. It is this similarity in world view that made me choose Rummel's field theory as the guiding theory of this study.

3.2 Concept of a Field

The concept of a field is not new. The notion has existed since the time of Euclid. 43 What is new to us, however, is its application in modern science.

3.2.1 The Field Concept in Physics

Even though the notion of a field has been an age-old concept in physics, it was only when Maxwell first introduced it by formulating the law of electromagnetism in the 19th century, that the concept

⁴²Rummel, 1965, p. 183.

⁴³For various applications of the field concept in history, see Wright, 1955, pp. 524-8.

began to play a great role in various theories. 44

In Newton's mechanics, a system is completely described when the <u>location</u> of the constituent mass points are known as functions of time. But in Maxwell's field theory, "the field variables are defined for all values both of the time coordinate and of the three space coordinates, and are thus functions of four independent variables."

More important with Maxwell's field theory, however, is the notion of field strength or intensity. That is, the force acting upon a mass point is determined by the field in the immediate neighborhood of the mass point, and conversely, the presence of the mass point may and usually does modify the field. In other words, a field of force whose "attribute ... at any point is measured by the force which the field exerts upon a unit mass placed at that point." Was conceived. It was the very idea of a relationship between the attribute of the point and the force exerted at the point that was adopted by social scientists to explain social phenomena.

In general, a field is defined as "a region of space in which a given effect (as gravity, magnetism ...) exists and has a definite value at each point." Modeled after that, social scientists defined a field as "a complex of noelisted" forces (as biological, psychological and social or interpersonal) which serve as causative agents

[&]quot;4Bergman, 1942, p. 16.

⁴⁵ Bergman, Ibid., v. 17.

[&]quot;" Webster's Third New International Dictionary, 1968. For a mathematical definition of "field," see Yilmaz, 1965, up. 62-3.

[&]quot;loc. cit.

or as a frame of reference in human experience and behavior."48

Another influence of physical field theory on the social sciences is the concept of distances. "In Newtonian mechanics, the idea of position or location seems to be fundamental. From it we derive distance or extension as a subsidiary notion. Position is looked upon as a physical fact—as an identifiable point of space—whereas distance is looked upon as an abstraction or a computational result calculated when the positions are known. Field theory reverses this view.

Distance (extension, interval) is now fundamental; the location of an object is a computational result summarizing the physical fact that it is at certain intervals from the other objects in the world In brief, space is not a lot of points close together; it is a lot of distances interlocked." This idea is directly reflected in Galtung (1964) and Rummel (1965).

The third idea similar to physical field theory is the coordinate system in social field theory. As we have seen above, field in physics is defined by a time-space four dimensional coordinate system. Wright's field theory started with the introduction of the coordinate system (See 3.2.3).

⁴⁸Loc. cit.

⁴⁹Eddington, 1957, pp. 9-10.

3.2.2 Lewin's Field Concept

The most comprehensive among earlier attempts to utilize the concept of field in social science studies was Lewin's (1964). 50 To cope with a multitude of factors influencing an event, he used the "construct" field. He conceived of all behavior as "a change of some state of a field in a given unit of time (dx/dt)." In treating individual psychology, the field is the "life space" which consists of the person and the psychological environment as it exists for him. 51 In dealing with group psychology or sociology, a similar formulation was proposed. Lewin viewed that the social happening occurs in, and is the result of, "a totality of coexisting social entities, such as groups, subgroups, members, barriers, channels of communication, etc. 52 He also viewed that the relative position of the entities (within the field) represents the structure of the group and its ecological setting and that this relative position expresses also the basic possibilities of locomotion within the field. 53

To summarize, his "construct" of behavior is viewed as a function of life space: B = f(P,E) = f(LSp), and explaining behavior (B) then is identical with 1) finding a scientific representation of the

⁵⁰Since this is a collection of ten different works by Lewin, the exact year cannot be given here. 1964 is the year of publication of the book which includes papers published between 1940 and 1947.

⁵¹Lewin, 1964, p. xi.

⁵² Ibid. p. 200.

⁵³lewin, 1964, loc. cit.

life space (LSp) and 2) determining the function (f) which links behave ior to the life space. 54 But Lewin did not formulate the function. He only suggested the broad relationship between a unit's behavior and its setting, but neither mathematized the structure of his "theory," nor his deduction. Therefore, his construct remained short of a theory. 55

3.2.3 Wright's Field Concept

wright (1955) defined a field as "a system defined by time and space or by analytical coordinates, and by the properties, relations, and movements of the entities within it."⁵⁶ He believed that every situation can be conceived as a field by postulating suitable coordinates. Then he argued that a "description of the field provides a basis for explaining the past and in a measure predicting the future of the entities (within the field)."⁵⁷ On the basis of these postulates, he presented a verbally structured field theory applied to international relations.

Wright suggested two different types of fields, geographic and analytic. The former "locates the people and groups of the world and their characteristics, motivations, actions, institutions, and

⁵⁴Ibid., p. 240. B = behavior, P = person, E = environment, LSp = life space and f = "function of."

⁵⁵For theoretical comment on his theory, see Rummel, 1968a, p. 23, note 10.

⁵⁶Wright, 1955, p. 524.

⁵⁷Loc. cit.

conditions in actual time and space."58 And the latter implies that "each international organization, national government, association, individual, or other 'system of action,' or decision-maker may be located in a multi-dimensional field which is defined by coordinates, each of which measures a political, economic, psychological, sociological, ethical, or other continuum influencing choices, decisions, and actions important for international relations."59

Then observing movements of the entities across time within the field, and analyzing relative distances among entities, he tried to link behavior to its setting defined by the given situational dimensions.

Compared to Lewin's field theory, Wright's has some advantages since its coordinate system and vector notions give it potential for developing equations relating behavior to structural dimensions. But Wright himself did not formulate any generalizable lawlike statement concerning the relationships, nor did he provide any tool to define inter-relations among the dimensions of the field. In brief, his ideas were not integrated into a rigorous theory.

3.2.4 Rummel's Field Concept

Ten years after Wright's verbal formulation of the concept of a "field," Rummel systematized a "social field theory" using a linear algebraic model (Rummel, 1965).

⁵⁸Wright, 1955, p. 540.

⁵⁹ Ibid., p. 543.

The basic philosophy of Rummel's social field theory, as I have quoted elsewhere, is that "behavior is the consequence of the total social situation, and this situation forms a field consisting of social characteristics, or attributes, which stand in definite relation to each other (Rummel, 1968a)."

One notable departure of Rummel's concept from Wright's and others' is the <u>structure</u> of the field. Wright, for example, considered the Cartesian coordinate system for the structure of the fields he conceived. Since Cartesian space has orthogonally-fixed coordinates, and Wright assigns each of the attribute dimensions to each of these coordinate axes, we cannot express the relationship among the attribute dimensions in this space. But Rummel's field is a vector space where the attribute distances and nation's behavior are represented by vectors which can denote both the magnitude (in terms of length of the vector), and interrelationships among various attribute dimensions and behavior (in terms of the angle between vectors).

Rummel "analytically divides social reality into two vector spaces. One space is that of attributes of social units, and the other is that of behavior between social units. Within attribute space, each social unit is located as a vector in terms of its attributes. Within the behavior space, every pair of social units, called a dyad, is located as a vector in accordance with the interaction of the two members (Rummel, 1968a, p. 24)."

A basic characteristic of Rummel's concept which sets it apart from Wright's is the notion of distances. Wright also considered

various attribute distances (geographical, psychological, technical) as acting as forces influencing international relations (Wright, 1955, p. 297). In his field structure, however, the individual nation's attribute vector (the location of a nation in the field and the magnitude of the variance of the attributable variable) are regarded as fundamental and the distances (differences) are looked upon as a subsidiary notion or as a computational result calculated from known positions of the nations. 60

But in Rummel's field, distance is regarded as fundamental. A justification for preference of distance to magnitude was given by Rummel, drawing on an analogy with small group behavior: "The total behavior of an individual in a social group is highly related to his personality characteristics. Place an individual in different groups and his behavior will shift as a function of his personality differences with members of the group. That is, relative distances on personality dimensions between individuals influence behavior more than the actual characteristics themselves. Likewise, for nations it is social, economic, political, and geographic distances that influence international behavior. Differences in technological levels, values, power, and perception of the international order relate to the 'moves' that nations direct toward each other (Rummel, 1968c, p. 214)." In

⁶⁰For example, he considered, "the relations of friendliness or hostility of two systems of action can be indicated by the direction of their vectors toward or away from one another in the value field." (Wright, 1955, p. 545). He did not directly utilize the distance vector as a force in determining relations.

this sense, Rummel's field concept is more similar to the original concept of a field in physics rather than to other field concepts.

As we have seen, the basic philosophy of Rummel's field theory overlaps partly with Lewin's and Wright's. Indeed, there is little that is new about Rummel's field theory in its components. What is new is that "it integrates an orientation toward social reality and research with mathematics and some social propositions in a different way. The theory represents a reorientation toward social action, a different point of view." (Rummel, 1968a, p. 24) Being well integrated into a rigorous scientific theory, once the truth of the lawlike statement of the theory is validated by empirical testing, then the whole theory will serve as a useful general explanatory model about social behavior applicable to international relations, 61 i.e., as "a framework within which deduction about social action and international relations may be made." This is the merit of Rummel's social field theory.

⁶¹Field Theory is a general theory applicable to all kinds of social units. If we define social reality as international relations and social units as nations, then it serves as an international relations theory, and "we can represent international relations within the analytic structure of field theory and then describe the linkage between a nation and its attributes by the theory (Rummel, 1969b, p. 10)."

⁶²Rummel, 1968a, p. 24.

3.3 The Structure of Rummel's Social Field Theory: Seven Axioms

Rummel's social field theory (hereafter, it will be referred to as simply field theory) is based on several assumptions: 1) that a nation's attributes and behaviors coexist in a field and that the whole field is relevant to understanding the specific behavior; 2) that the past is presumed to operate through behaviors and attributes currently coexisting in the field; and 3) that absolute magnitudes of behaviors and attributes are considered irrelevant; what is relevant is the relative behavior between nations and their attributes relative to each other (Rummel, 1969c).

These assumptions of field theory are mathematically structured in the following way.

- 1) The international field of attributes and behaviors is divided into two infinite vector spaces, one of behaviors and the other of attributes.
- 2) In attribute space, nations are projected as vectors according to their standardized attributes scores, and in behavior spaces, nations are coupled into nation dyads by the behavior of one nation to another, and all possible dyads are projected into this space as vectors.
- 3) The linkage between the two spaces is postulated as a linear dependence of a dyad's position in behavior space on the distance vectors between the nations in attribute space. These distance vectors are then conceived of as social forces affecting international behavior.

Formally, field theory consists of seven axioms, describing social reality and functionally relating the behavior of social units to their attributes. The seven axioms are:63

- Axiom 1. International relations is a field consisting of all the attributes and their complex interrelationships.
- Axiom 2. The international field can be analytically divided into attribute, A, and behavioral, B, spaces into which attributes and interactions are projected, respectively, as vectors.
- Axiom 3. The attribute and behavioral spaces are generated by a finite set of linearly independent dimensions.
- Axiom 4. Nations are located as vectors in attribute space and coupled into dyads in behavior space.
- Axiom 5. The distance vectors in A-space that connect nations are social forces determining the location of dyads in B-space.
- Axiom 6. The direction and velocity of movement over time of a dyad in B-space is along the resolution vector of the forces, d.
- Axiom 7. B-space is a subspace of A-space.

Axiom 1 is a definitional statement. It says that the field consists of all the attributes and interactions of nations and their complex interrelationships. Here the attributes are not properties of the nations, but the quantities that define positions of the elements in the field vis-à-vis other nations. Any descriptive concept which can differentiate the position of a nation within the field from

⁶³The mathematical structure of the seven axioms of field theory is given in Rummel, 1965, Appendix I.

other nations can be an attribute variable. These may be such distinctions as size, shape, income, education, race, values or geographic locations (Rummel, 1968a, p. 16). Therefore, they may be infinite in number.

Interactions of nations are defined as behavior acts; any action of one nation toward a specific other nation. This action then couples the two nations together. Two nations so coupled by the actions of one are called a <u>dyad</u> and the action involved is dyadic behavior.

Attributes and behaviors are all in one space and they are all inter-related in a complex way. An attribute is not only related to other attributes but also to behavior. The focus of field theory is to find specifically the relations between attributes and behavior among other relations. Axiom 2 is postulated to separate all these complex interrelationships into these two groups. The separation is purely for the purpose of the theory. The second part of the axiom is designed to connect the reality of international relations with an analytic system, linear algebra. No longer simply a tool for analysis, linear algebra is an intrinsic part of the theory itself, and any deduction possible within it is allowable in this theory.

As stated above, the spaces defined by Axioms 1 and 2 could be infinite in their dimensions. To make the space finite, so that we can handle it, we need Axiom 3 which implies that if a behavior is

dependent on any set of attributes, then it will be dependent on a basis 64 (which is finite) of A-space.

Axiom 4 defines the constructs of A- and B-spaces. By Axiom 2, the field is separated into two analytic spaces, in which attributes and interactions are represented as vectors. By the fourth axiom, we also represent nations and nation dyads as vectors. Since the same nations are plotted in the two spaces (in A-space, as a separate entity; in B-space, as dyads), this provides us with an important bridge to connect the two spaces.

Axiom 5 is the core of the field theory. It relates attribute space to behavior space. The axiom is not an analytic, nor a definitional statement, but an empirical one which is falsifiable. This axiom makes the whole theory a testable one.

The relationship between A- and B-spaces defined by Axiom 5 is static. To give a dynamic interpretation to this, we need Axiom 6 which stipulates, 1) that the position of any dyad in B-space shifts according to the changes in the forces of A-space (this implies that the origin in B-space is the stable equilibrium of all the social forces), 2) that the changes occur along the resolution vector of the forces, d. This axiom is also non-analytic, whose truth can be verified by an empirical test. This proposed study, however, will deal only with the static relations postulated in Axiom 5.

⁶⁴A basis is a set of vectors which span the space. Therefore, any linear transformation of a basis is also a basis of the space, since it also spans the space. The dimensionality of a basis is unique, but the basis itself is not unique. For further detailed discussion, see Rummel, 1970a, pp. 66-71.

Finally, Axiom 7 tells us that B-space is completely contained in A-space and a basis of B-space is a linear combination of a basis of A. This axiom is not based on philosophical grounds but on a technical necessity. It provides a favorable condition under which we can connect the two spaces mathematically (see the next section). On the other hand, it may reduce the generalizability of the whole theory.

If we can innovate the necessary mathematical manipulations this axiom can be deleted.

3.4 The Model of Field Theory

A theory is one of many possible interpretations of a calculus. 65 In field theory, the calculus is the analytic system composed of the seven axioms described above. When we interpret one or more lawlike statements of the analytic system, within the context of the system, such that the interpreted relation can be tested empirically, we have a theory. By employing a different semantic rule, we can interpret the same calculus in different ways, and thus establish another theory. So far as we do not violate any part of the contents of the axioms, all interpretations are isomorphic to each other. Therefore, even though they are different models, they are still the same theory.

The lawlike statement which is empirically falsifiable, in field theory, is the fifth axiom: the distance vectors in attribute space that connect nations are social forces determining the location of

^{65&}quot;A model for a theory consists of an alternative interpretation of the same calculus of which the theory itself is an interpretation (Rudner, 1966, p. 24)."

dyads in behavior space. Depending upon how we operationalise the attribute distances and how we relate these distance vectors to the location of dyads in behavior space, we have different models of field theory.

3.4.1 The Basic Equation

The fundamental linkage between behavior and attributes proposed by Rummel, is

$$\mathbf{w}_{i \to j, k} = \sum_{\ell=1}^{p} \alpha_{\ell} \mathbf{d}_{i \to j, \ell} \tag{1}$$

where $w_{i+j,k}$ is the k-th dimension of B-space and i+j is a particular dyad, nation i as the actor and nation j as the object. The term $d_{i+j,\ell}$ is one of the elements of the distance vector between nations i and j on the ℓ -th dimension in A-space and α_{ℓ} is a weighting scalar parameter on that dimension.

1) The term $d_{i\to j,t}$ is the distance vector from nation i to j on the *t*-th attribute dimension. If we define nation i's value on the *t*-th coordinate as $a_{j,t}$ and nation j's value as $a_{j,t}$, then,

$$\mathbf{d}_{\mathbf{i}+\mathbf{j},\ell} = \mathbf{a}_{\mathbf{j},\ell} - \mathbf{a}_{\mathbf{i},\ell} \tag{2}$$

For example, China's GNP in 1962 was 42 billion U.S. dollars, while Japan's was 77 billion. 66 In this case, the distance from China to

⁶⁶ Eckstein, 1966, p. 249, Table 7-1.

Japan on the GNP dimension is calculated as

d_{China+Japan}, GNP = 77 - 42 = 35 (billion dollars)⁶⁷

In a similar fashion, we can calculate the distance from China to

Japan on other attribute dimensions; population distance = -484

million, steel production distance = 17 million tons,⁶⁸ and so on.

Field theory axiomizes that each of these distances are the components of the force vector that makes a nation behave in a certain way.

- 2) Next, the term $\alpha_{\underline{\ell}}$ is the weighting parameter of each attribute dimension. Each attribute distance may have a different impact on the decision-makers of different nations. For example, the Chinese may be very concerned about their economic distance from other nations, while regarding the religious distances (differences) as trivial. Each $\alpha_{\underline{\ell}}$ is the specific scalar weight for each of the different attribute distances.
- 3) The symbol Σ denotes that we need to sum all attribute distances (differently weighted) in order to calculate the resultant force which is exerted on the nation to determine her behavior.
- 4) Finally, the term $\mathbf{w_{i+j,k}}$ represents one of the elements of the vector of nation i's behavior to j on the k-th behavioral dimension in B-space. In field theory, as we discussed above, the unit of

⁶⁷In actual research, both A- and B-spaces are factor analyzed, first. The factor scores are, then, used as the values of each unit on factor dimensions. Therefore, d, the distance between a and a measures the differences in factor scores. The "raw differences" are given here to clarify the concept of distance.

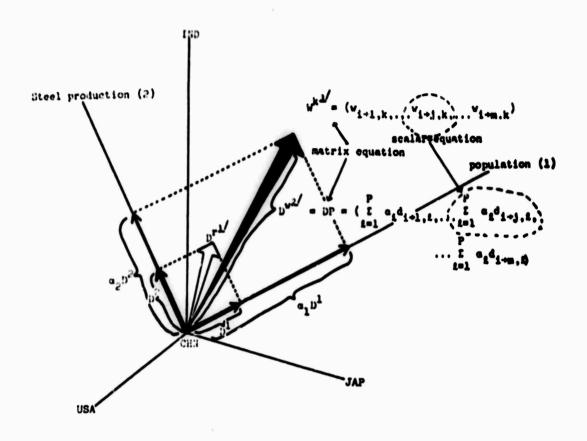
⁶⁸ Both figures are from the UN Statistical Yearbook, 1965.

nation behavior is defined as a <u>dyad</u>, a pair of nations, one of which directs her behavior toward another (with our notation i.j., the nation i is the actor, and j is the receiver). For example, the fact that China gave 50 million dollars of economic aid to North Korea (1955) is expressed as

WChina N. Korea, economic aid = 50 million dollars

Equation (1) given above is in scalar form. That means we take one general element from the left side and one from the right side and express the relationship between them, or in other words, the equation denotes only one dyadic relationship. If we express equation (1) in matrix (vector) form, i.e. for all m dyads, it becomes

$$W_{mxl}^{k} = D_{mxp} P_{pxl} \tag{3}$$


where W_{mxl}^k is the k-th dimensional behavior vector of R-space which is composed of the same behavior of all m dyads; D_{mxp} is the matrix of the distance vectors, each column of which represents an attribute distance vector for m dyads; and P_{pxl} is a set of p weighting parameters each of which correspond to an attribute vector.

The expanded form of this matrix equation is,

where D^{ℓ} is the ℓ -th column vector of D. If we define D^{W} as the weighted resolution vector of D^{ℓ} vectors where each D^{ℓ} vector is weighted by corresponding α_{ℓ} weights, then.

$$\mathbf{w}^{\mathbf{k}} = \mathbf{D}^{\mathbf{w}} = \begin{array}{ccc} \mathbf{p} & \mathbf{\alpha}_{\ell} & \mathbf{D}^{\ell} \\ \mathbf{g} = \mathbf{1} & \mathbf{\alpha}_{\ell} & \mathbf{D}^{\ell} \end{array} \tag{5}$$

Geometrically, the basic equation of the field theory can be illustrated as in Figure 1. Here, the location of China's position is

 \underline{y}_{D^r} = resolution vector of \underline{D}^t

 $\frac{3}{2}$ w^k = k-th vector of W. The j-th element of W^k is $v_{i+j,k}$.

FIGURE 1

GEOMETRIC EXPRESSION OF THE BASIC EQUATION OF FIELD THEORY

taken as the origin of the coordinates. (In general, any point in attribute space may be chosen as the origin. The relative distances among all nation points are not affected by choice of origin.) There are q dimensional vectors in W and each of them are related to b^W in the form of equation (5). If we express all the equations as a single equation, we would have

$$\mathbf{W}_{\mathbf{m}\mathbf{x}\mathbf{q}} = \mathbf{p}_{\mathbf{m}\mathbf{x}\mathbf{p}} \mathbf{p}_{\mathbf{p}\mathbf{x}\mathbf{q}} \tag{6}$$

where W_{mxl}^{k} is one of the column vectors (k-th vector) of W_{mxq} .

3.4.2 Field Theory Model I and Model II

There are two different models developed by Rummel according to the different interpretations for weighting the parameters. In Model 1, the parameters are universal, i.e., the same across all the actors. This implies that the unique experiences and capacities of each nation and the structures within them are irrelevant to her behavior. In other words, a nation's responses to the various kinds of distances are the same as all other nations. Furthermore, it implies that the behavior of nation i to j is the exact opposite of the behavior of nation j to i. This obviously contradicts common sense. 69

^{69&}quot;Recall that a distance vector for nations i and j is a difference. Thus, when we reverse i and j we only reverse the sign on the distance vector. Then, the behavior of i to j will only differ from j to i in the sign, and not the absolute value (Rummel, 1969b, p. 18)."

In Model II, the parameters are unique to each actor nation. This model allows the impact of each of the attribute distances on behavior to differ according to each nation. This is the point where each nation's intelligence can be geared in. Thus, for example, although China's attribute distances from other nations are the same as India's, the impact of these distances on her foreign policy will differ from India's, due to her unique perceptual framework. For this reason, Model II is preferable to Model I. In Model II, the equation that links behavior and attribute difference is,

$$w_{i+j,k} = \sum_{\ell=1}^{D} \alpha_{i\ell} d_{i+j,\ell}$$
 (7)

Here, $\alpha_{i\ell}$ has replaced α_{ℓ} in the equation of Model I, equation (2).

In matrix form, the equation is

$$W_{mx1}^{k} = D_{mxp} P_{px1}^{i}$$
 (8)

and for all q behavioral vectors together,

$$W_{mxq} = D_{mxp} P_{pxq}^{i}$$
 (9)

where P_{pxl}^{i} and P_{pxq}^{i} are unique weighting parameters which represent each nation's idiosyncratic decision-making system. For convenience the superscript i will be dropped, since this study will deal with only one actor, China, P_{pxq} can denote P_{pxq}^{China} without any confusion.

Then, the complete model with error matrix U inserted will look like

$$W_{mxq} = D_{mxp} P_{pxq} + U_{mxq}$$
 (10)

Hereafter, when I refer to field theory, it will be Model II, if not specified otherwise.

3.4.3 The Multiple Regression Model and the Canonical Regression Model

Now let us turn our attention to the behavior vector in B-space
which is supposed to be related to the resolution vector of the
individually weighted attribute distance vectors of A-space (DW).

Axiom 5 states that "the distance vectors in A-space that connect nations are social forces determining the location of dyads in B-space." Mathematically this axiom tells us only that distance vectors in A-space are functionally related to the behavioral vectors in B-space, but does not specify how these two kinds of vectors (or the two spaces) are related. How this is done, therefore, depends upon our intuitive interpretation of the nexus under the guidance of the overall philosophy of field theory. Among many possible interpretations, I will discuss two; Rummel's original formulation and an alternative.

Rummel's original formulation was given above in equations (7) and (8). This relates the resolution vector of attribute distances (D^W) to the k-th dimensional vector of B-space (W^k) . In this formulation, the same matrix D^W weighted with different sets of weighting parameters, P^1 , P^2 , ... P^k , ... P^q is linked to each of the behavioral vectors in B-space respectively, namely, W^1 , W^2 , ... W^k , ... W^q . The model, however, has nothing to do with the interrelationship among the

behavioral vectors. Equation (10), $W_{mxq} = D_{mxp}P_{pxq} + U_{mxq}$, is therefore, a mere aggregation of q separate vector equations (multiple regression equations).

Theoretically, this formulation would tell us that a particular behavior (e.g. negative communication) is explained by a certain subset of attribute distances (e.g. GNP, political distances, etc.), while another behavior (e.g. economic aid) is mainly explained by another set of distances (e.g. number of Communist party members, steel production, etc.) without specifying the interrelationships between these individual behaviors (e.g. negative communication and economic aid). 70

In this model, the weighting parameters P may be understood as the actor's unique "decision-framework" which represents the combination of both the perceptual framework and the system of behavioral choice, since this is the only set of parameters by which the actor's idiosyncracy may be expressed. 71

Geometrically, the relations between each of W^k and D^w may be illustrated as in Figure 2.

When we apply this model to an empirical study, we need to evaluate the P matrix of equation (10). Since this model requires an analysis of the relations among a single criterion measure (k-th

⁷⁰If we use the orthogonal basis dimensions rather than the raw behavioral vectors, this orthogonality gives meaningful interrelationships among these separate equations, i.e., they are mutually independent. In this case, notice that the relationships are specified by the intrinsic characteristics of the basis, but not by the model.

⁷¹This distinguishes this model from the canonical model where perceptual and behavioral frameworks are separated and represented by different parameters. See Chapter 1 and the next part of this Chapter.

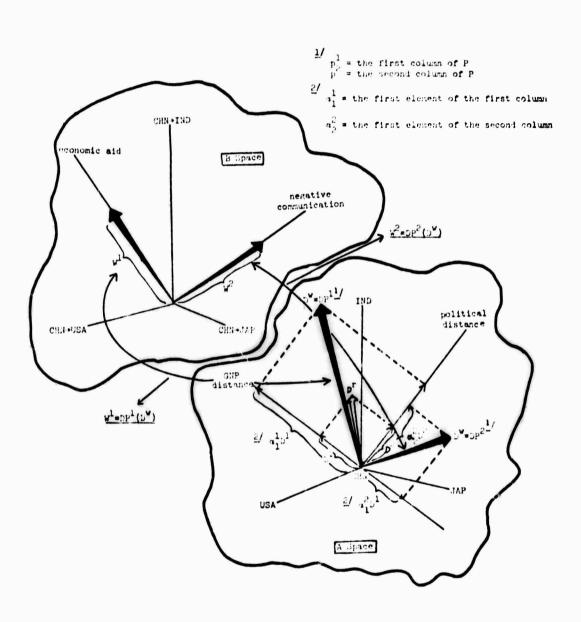


FIGURE 2

GEOMETRIC ILLUSTRATION OF MRM (MULTIPLE REGRESSION MODEL) OF FIELD THEORY

behavioral vector) and two or more predictor measures (p attribute distance vectors), we can evaluate the values of P employing the least-squares estimation technique, a standard solution of a multiple regression model which assures us of finding the best unbiased estimate of W^k. 72 Hereafter, 1 will call this formulation (equation 10) the Multiple Regression Model of Field Theory (MRM).

Technically, however, this model (MRM) created a problem. In this study, I sought: first, to determine a set of attribute indicators that best account for China's foreign behavior, and second, to "assess the empirical fit of B-space to A-space." The first goal could be achieved with the MRM, since the estimate of W by P which is evaluated through the least-squares technique is the best unbiased estimate of W.74

In assessing the maximum fit between A- and B-space, however, there was a problem. With the MRM, to judge the fit between the two spaces, we measure the proportion of variance in B-space accounted for by A-space. If q variables of W are mutually orthogonal, then the 'trace correlation squared' (\overline{r}^2) , which is the mean variance of q behavioral variables in W accounted for by corresponding q estimate of the variables (\hat{W}^k) , can measure the fit, since \overline{r}^2 has the largest

⁷²For the conditions and mathematical derivations for the solution of the multiple regression model, see Johnston, 1963, pp. 108-115, and Cooley and Lohnes, 1962, pp. 31-35.

⁷³These two goals are the same as Rummel's. See Rummel, 1969b, p. 22.

⁷⁴ If the m dyads are a random sample from a multinormal universe. Rummel, loc. cit.

value for orthogonal W when W^{k} is estimated through the least-squares method. The equation for $\overline{r^{2}}$ is

$$\bar{x}^2 = \frac{1}{q} \sum_{k=1}^{q} (\frac{1}{m} w^k, \hat{w}^k)^2$$
 (11)

or in general

$$\overline{r^2} = \frac{1}{qm^2} \operatorname{tr}\{(W'W)'W'\hat{W}\}$$
 (12)

where "tr" is the sign for summation of the diagonal elements of the matrix.

The problem was that empirically we could not expect the variables of W to be orthogonal, nor does field theory constrain them to be orthogonal; only linear independency is required. Therefore, the mean correlation squared of all multiple correlations between $\mathbf{W}^{\mathbf{k}}$ and $\mathbf{D}^{\mathbf{W}}$ may not be the largest possible trace correlations squared between A- and B-spaces.

If we are interested in assessing the maximum fit between two spaces and not in reproducing the best estimated value of individual behavior variables, then we can start the analysis with any of the orthogonal basis of W instead of the raw variables. For example, if we factor analyze the W space with the varimax rotation criterion, we can find a basis of W, whose dimensions are mutually orthogonal and whose trace correlation with DW is the maximum when we regress each of the behavioral basis dimensions onto DW individually. But in this case, there is another problem.

A basis is not unique. Theoretically, there may be an infinite number of bases of W, all of which have the same maximum trace correl-

ations with D^{W} , because we can rotate any basis of W by any linear transformation without altering its inner structure (inter-dimensional relationship). For different bases, however, the distribution and magnitude of correlations between each component behavior vector and D^{W} will vary from one basis to another. Therefore, we need one more restriction on the model which will determine the basis that would find the W^{K} which is best accounted for by the distances.

I solved this problem by making a simple modification of the interpretation of Axiom 5 in Rummel's original model. Instead of relating the W^k vector of B-space to D^w of A-space, I related W^w, the weighted resolution vector of q dimensions of W, to D^w. The scalar equation of the new model, then, is

$$\sum_{k=1}^{q} \beta_{ik} w_{i+j,k} = \sum_{\ell=1}^{p} \alpha_{i\ell} d_{i+j,\ell}$$
(13)

where $\beta_{\dot{1}\dot{k}}$ is the weighting parameter of the k-th behavioral dimension of W. In matrix form, the equation is

$$W_{mxq} Q_{qxl} = D_{mxp} P_{pxl}$$
 (1k)

where $Q_{\alpha \times 1}$ is the matrix of β parameters for all q dimensions.

Technically, what I have done is to form a composite variate

(V) out of p distance dimensions of D, weighting each p dimension by P, and another composite variate (Y) out of q dimensions of W, weighted by Q, and, then, relate these two composite variates. Geometrically, the relationship between the two variates is illustrated in Figure 3.

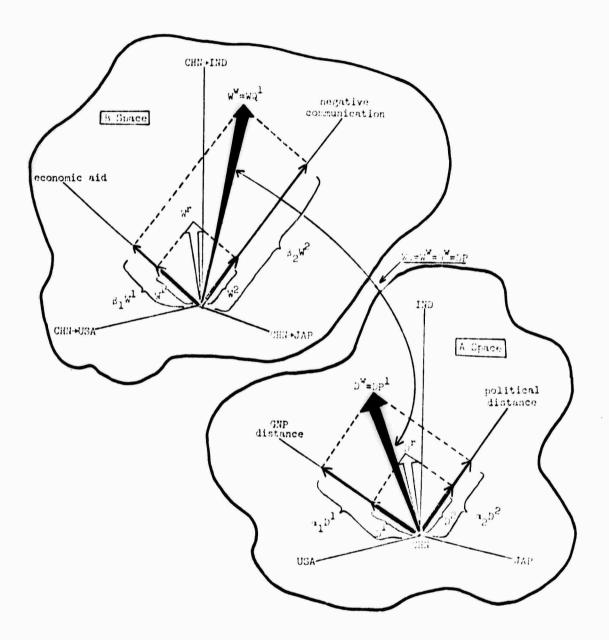


FIGURE 3

GEOMETRIC ILLUSTRATION OF CRM (CANONICAL REGRESSION MODEL) OF FIELD THEORY

Theoretically, with this model, the parameters of P are the actor's unique perceptual framework of attribute distances, 75 which is formulated by her historical background, value system, cultural heritage, etc., and the parameters of Q the unique behavioral framework or system of behavioral choice which gives different emphasis on each behavior when given forces are applied.

To apply this model to China's behavior, we must evaluate both P and Q empirically, or solve Q and P of the following equation

$$WQ = DP + U \tag{15}$$

or

$$Y = V + U \tag{16}$$

where W and D are known, and U is the random error uncorrelated with any of the variables in D.

A solution is possible if we put the following restrictions on the equation 76

⁷⁵Note that by "unique" perceptual (or behavioral) framework, it is not meant that an actor has only one universal screening framework for differentiating the relative potency among various distances. It means that an actor has a set of frameworks, each of which is for a particular behavior pattern. For example, to determine the intensity of negative communication toward an object nation, the actor may value the power distance most heavily, while for a trade behavior, it may show highest sensitivity to the distance in economic development. If we use canonical regression analysis to delineate these unique perceptual (and behavioral) frameworks, we shall have q sets of different unique perceptual frameworks, where q is the dimensionality of B-space.

⁷⁶See Rummel, 1969b, p. 24.

$$Y'_h V_g = maximum correlation when h = g$$

$$Y'_h V_g = 0, when h \neq g$$

$$Y'_h Y_h = V'_h V_h = 1$$
(17)

The equation (15) with restrictions (17) is the canonical regression model 77 and we can solve for the best fitting Y and V from W and D employing canonical analysis. Then "V(=DP) will give the parameters of P best in the sense of minimizing U, and Y(=WQ) will give the behavior dimensions of B having the best correlations with attribute differences D." 78

The canonical analysis gives us q different canonical equations, 79 each of which maximizes the correlation between the paired canonical variates $(Y_h$ and $V_g)$ under the restriction that each pair is orthogonal to all other pairs. In other words, the first canonical equation gives the highest possible correlation between the first composite score (variate) of distances (V_1) and the first composite variate of behavior (Y_1) . The second equation gives the next composite variate of distances (V_2) and behavior (Y_2) which maximizes the correlations of the remainder of the total variances (the unexplained portion of the variances which is independent of those explained by the first

⁷⁷For the model of canonical regression and its mathematical derivations, see Hotelling, 1935, Hooper, 1959, Cooley and Lohnes, 1962, Anderson, 1958, and Glahn, 1969.

⁷⁸Rummel, op. cit., p. 24.

 $^{^{79}} The number of pairs of canonical variates which come out from a canonical analysis is q or p, whichever is the smaller. Axiom 7 tells us that q <math display="inline">\leq$ p.

canonical equations) after the first equation had explained as much as possible, and so on for the third to q-th equations.

Then how can we fit this model to our reality? I interpreted the model in the following way: The whole decision space of the decision-makers, which includes both the inputs (targets of perception; here these are attribute distances between the decision-maker's nation and other nations) and outputs (decision result; behavior), may be decomposed into many subspaces or substructures of the decision process. For example, for military aid to other nations Chinese decision-makers would consider mainly economic distances and political systems rather than literacy rates, language difference, and catholic population. In determining behavior concerning student exchange, however, language difference, and technical distances may emerge as major considerations. Here we may say that the first pattern of relations is a political subset of the behavior structure while the latter constitutes a cultural subset.

Each substructure of the behavior pattern is represented by each of the canonical equations of the model. In this sense, equation (14) is one of the subsets of the whole model which contains q number of subsets. We, then, can express the general model of CRM in the following form,

$$W_{mxq} Q_{qxq} = D_{mxp} P_{pxq} + U_{mxq}.$$
 (18)

I called this new model the Canonical Repression Model (CRM) of field theory. 80

As discussed above, the MRM has one decision framework and the CRM has two--perceptual framework and behavioral system--and this means that the decision framework in the MRM is decomposed into two separate systems in the CRM.

the CRM, however, has one theoretical disadvantage compared to the MRM. In evaluating Q and P, the solution under the standard restrictions of the canonical analysis maximizes only the correlation between the composite canonical variates of both W and D; each individual behavior variable is identifiable only as it contributes to the particular variate. Also, the solution does not assure us of finding the maximum correlation between individual behavior and distances. Therefore, the CRM is not an adequate model to be applied if we are interested in reproducing the raw values of each of the behavioral variables which has the maximum multiple correlations, with the set of distances.

$$\mathbf{w}_{\mathbf{i}+\mathbf{j},\mathbf{k}} = \frac{p}{2} \alpha_{\ell} \mathbf{d}_{\mathbf{k}+\mathbf{j},\ell},$$

which is the multiple regression model. This is only true when W and D are orthogonal matrices. If we use factor scores (obtained from the orthogonal varimax rotation) instead of raw data, W and D are orthogonal.

Where all β coefficients except for one, the k-th parameter β are zeros. In other words, if we give another restriction, $\beta = 0$ if k \neq number of the equation, and $\beta = 1$ if k = number of the equation, then equation (13) will degenerate into

Since I wished both to find China's unique system of perception of attribute distances and preference of behavior, and to predict the actual value of behavioral variables, I used both models. To delineate China's unique foreign policy structure (behavior pattern), the CRM was better than the MRM, while to calculate the best estimated real value of a specific behavior in the future, the MRM was better. A detailed strategy for the utilization of both models will be discussed in the next chapter.

3.4.4 Theoretical Implication of the Empirical Model

In order to develop an empirically applicable model for Communist China's foreign behavior, I interpreted the P and Q of field theory Model II as Chinese decision-makers unique perceptual and behavioral frameworks, respectively, which are invariant across time.

Then, I designed the P and Q to be evaluated from the empirical data.

Thus, theoretically, what I have done is that to the analytic skeleton of field theory, flesh of substantive contents were given empirically. In field theory, the postulated form of the relationship between behavior (W) and attribute distances (D) is a linear function. The P and Q, then, are to be evaluated to maximize the linear fit between the two spaces.

As I mentioned earlier, however, the theory does not postulate the quantities of the P and Q substantively. These are left to be evaluated with empirical data. Therefore, the theory implies that the nature of linearity between A- and B-spaces is invariant over time, but it does not imply that the actual figures of the P and Q are also

invariant. In field theory, the P and Q may vary across time, because the D and W will change over time, and the parameters that maximize correlations of different data sets may be different.

By interpreting the P and Q as invariant systems of perception and behavior, however, I add one extra-model restriction on the nature of the P and Q (to be invariant across time). In this sense, the "interpretation" actually creates a sub-theory within the field theory framework by adding one more constraint on the nature of the P and Q.

CHAPTER IV

RESEARCH DESIGN

The goals of this study, as discussed in the introduction, were first, to test field theory with data for China's foreign behavior, and second, to uncover China's unique behavioral patterns by evaluating P and Q of the field theory Model II equation. The second goal can be fulfilled by obtaining equations that link foreign behavior patterns to attribute distances in ways unique to China. Then, this pattern relationship between behavior and distances can be used to predict the values of the behavioral variables for China in the future. What follows is the design I used to achieve these goals.

4.1 The Bases of A- and B-Spaces

Field theory is formulated in terms of the basis dimensions of A- and B-spaces (see 3.3 Axiom 3 in conjunction with Axiom 5). Furthermore, in this study, the models of China's behavioral pattern are formulated in the forms of canonical structure equations. Although the canonical regression model does not require orthogonality among variables, to eliminate the effect of interaction among the variables (basis dimensions) in canonical analysis the basis dimensions must be orthogonal, because intercorrelated variables will mix the contribution of each individual variable to the variate scores with the joint effect of the correlated variables. To meet these requirements, both A- and B-space data were factor analyzed employing the principal component

technique, 81 and orthogonally rotated with the varimax criterion. 82

The resultant orthogonal factors of the data matrices are the bases of the two spaces. The basis of B-space thus delineated is W and that of A-space D in the CRM (equation 18).83

4.2 Factor Comparison

If field theory is valid, the proposed linear linkage between Aand B-space bases should be unchanged across time. Thus, the theory
was tested twice, first with 1955 data and then with 1963 data. Then,
the results of both analyses were compared using various statistical
techniques (see 4.3 and 4.4 below).

The comparison, however, requires the same (at least similar) structure for the spaces (both D and W) across the two time points, i.e., D in 1955 and D in 1963 must have the same factors as does W. The requirement of identical factors across time is crucial in formulating an empirically applicable model for China's foreign behavior, with which the actual scores of future behavior variables are supposed to be forecast.

⁸¹For definition and solution of the principal component analysis technique, see Rummel, *ibid.*, pp. 338-345 (4.3.4).

⁸²Rummel, *ibid.*, pp. 391-393.

⁸³Factor scores of the basis dimensions were used in the W and D matrices. For computation, "The Modular Factor Analysis Package," newly programmed by Charles Wall is used. This package is available at the Dimensionality of Nations Project, University of Hawaii.

In this study, the factors of 1955 space (both A- and B-) were compared to those of 1963 space with Ahmavaara's transformation technique. 84 To compare the factors of two matrices (D-1955 and D-1963; W-1955 and W-1963), first the loading matrices of the D-1963 and W-1963 (\hat{F}_2) were estimated from the factor loading matrices of the first analyses, D-1955 and W-1955 (F_1) employing the following formula:

$$\hat{F}_2 = F_1 L$$
, where $L = \{(F_1' F_1)^{-1} F_1' F_2 \}$.

The product-moment correlation between F_2 and F_2 served as an indicator of similarity between the two spaces. Also, correlations between each pair of corresponding factors in two time points were calculated to see individual similarities among variables. 86

⁸⁴See Ahmavaara and Markkanen, 1958, pp. 80-83.

⁸⁵The correlation is calculated between two super column vectors, produced by connecting all columns in the matrix one after another (the top of the second column is placed below the bottom of the first column, and so on). Computation was done with Wall's "Modular Factor Comparison Program," which is also available at the Dimensionality of Nations Project, University of Hawaii.

 $^{^{86}}$ The same computation program by Wall given in footnote 85 is used.

4.3 Multiple Regression Analysis

To test the MRM of field theory, each of the behavior vectors were regressed on all vectors of D. Then, the predicted value ($\hat{W} = DP$) was correlated with the observed value (\hat{W}). This correlation indicated the fit of the model to the data.

4.4 Canonical Regression Analysis

From the CRM model (equation 18), taking W to be dependent and D to be independent, a canonical regression analysis was performed. This analysis gave us two kinds of matrices.

The first matrix is the regression coefficients, the α 's and β 's of the CRM, which are the weighting parameters of each of the dimensional vectors which maximizes the canonical correlation between each pair of canonical variates (Y₁ and V₁, Y₂ and V₂, ... and so on).⁸⁸ These regression coefficients allow us to formulate q number of relational equations

$$\beta_{1}W^{1} + \beta_{2}W^{2} + \dots + \beta_{k}W^{k} + \dots + \beta_{q}W^{q}$$

$$= \alpha_{1}D^{1} + \alpha_{2}D^{2} + \dots + \alpha_{k}D^{k} + \alpha_{p}D^{p} + e$$
(19)

⁸⁷The correlation between W and W is calculated as if all vectors in both matrices form one long column vector each, the first vector being connected to the top of the second vector, and so on. In this way we can get a single measurement of fit between the two matrices. For computation, the "Modular Factor Comparison Program" (footnote 85) is utilized.

 $^{^{88}\}mbox{There}$ will be q sets of canonical variates, where q is the dimensionality of W.

where e is random error. Each of these equations represents each sub-set of China's behavior pattern discussed in Chapter 3. Let us call this the canonical regression coefficient matrix (C_).

Another matrix obtained from the canonical analysis is a canonical loading matrix, which contains correlations between the canonical variates and the original variables. 89 Therefore, each of the elements of this matrix, when squared, gave the proportion of variance in Y_h and V_g accounted for by the corresponding dimensions. Utilizing this knowledge of the contribution of individual dimensional variables in constituting canonical variates, we can see the pattern structure of China's behavior; which distances are related to which behavior. If we define the loadings of W_h^k on Y_h as b_{kh} , and the loadings of D_g^k on V_g as a_{kg} , then we can construct the following structure equations,

$$b_{1h}^{1} w^{1} + g_{2h}^{2} w^{2} + \dots + b_{kh}^{2} w^{k} + \dots + g_{qh}^{2} w^{q}$$

$$+ a_{1g}^{1} b^{1} + a_{2g}^{2} b^{2} + \dots + a_{kg}^{2} b^{k} + \dots + a_{pg}^{2} b^{p}$$
(20)

where g = h, and the arrow means "relatedness" between the two combinations. Each of these equations will tell us which attribute distances are important in explaining a specific combination of behaviors. Let

 $^{^{89}}$ On the left hand side, the correlations are between W_h^k and Y_h , and on the right hand side, between D_g^k and V_g , where W_h^k is the value of W_h^k in the h-th canonical equation, D_g^k , the value of D_g^k in g-th canonical equation.

us call this the canonical structure matrix (C_s) . As we shall see later, both equations, (19) and (20), served to uncover the patterns of China's foreign behavior.

The following four statistics were utilized to measure the degree of fit between the model and data.

canonical correlation (r): This is the correlation between Y_h and V_g , where h=g. There is q number of canonical correlations, because in this study q, the dimensionality of B-space, is less than p, that of A-space. The canonical correlation, when squared, tells us the proportion of the total variance accounted for by the pattern, and will measure the salience of the pattern.

trace correlation squared (r^2) : The formula for calculating the trace correlation squared was given as equations (11) and (12). The r^2 gives the proportion of overall variances in W accounted for by the model $(\hat{W} = DP)$. To see the overall fit between A- and B-spaces, therefore, this statistic is an adequate measurement.

behavior scores: The canonical variate is a hypothetical composite variable of all the dimensional vectors of distances and behavior, which are patterned by unique weighting parameters. If the patterns of behavior and of attribute distance vectors fit perfectly, the two canonical variates should be equal. This means that we can predict the behavior pattern perfectly from the pattern of attribute distances. Therefore, the magnitude of the differences between the two canonical variate scores—the actual canonical variate scores and those estimated

from the distance pattern--is a good indicator of the fit of the model. The standard deviation of the errors--the remainder after subtracting the estimated scores--can be used as a benchmark for the degree of fit of the model to the data.

communality estimate (H-SQ): In equation (20), if we square each of the loadings and sum them together for each side $(\sum_{k=1}^{3} b^2_k)$ and $\sum_{i=1}^{n} a^{2}$, we will have another statistic called communality estimates. This statistic tells us the proportion of the variance in each variable contained in the pattern represented by equation (19). The sum of the squared communality over all factors in A-space, then, will tell us the proportion of variance in the space accounted for by the pattern. 90 If the H-SQ of distance in one pattern is low, this means little relation between the component variables and the pattern. If very high, it indicates that most of the variables are identified with the model. If we weight this H-SQ and corresponding H-SQ of B-space vectors (the same across all variates) by the ratio of numbers of vectors involved, then, we have the proportion of the total variance represented by equation (19). This statistic will, therefore, tell us the inner structures of the patterns, as well as the relative importance of the patterns in terms of the amount of variance accounted for.

⁹⁰The communality estimates (H-SQ) of behavioral vectors will always be 1.00, since B-space is smaller than A in dimensionality. Therefore, only the H-SQ of distances is meaningful for interpretation. See Phillips and Hall, 1968, p. 12.

4.5 Test of Applicability of the Models

If field theory is valid and the derived models can be applied to explain and predict Communist China's foreign behavior, then, we also should be able to forecast China's future behavior with the models.

The simplest test of the applicability of the models, therefore, is to compare the scores of each variable at some future time point forecast by the model with the observed scores. In this study, the tests were performed with the 1963 data in two different ways.

(1) Forecasting Values of Each Individual Behavior

In the first place, the scores of each individual behavioral factor of 1963 were forecast from the 1955 model. In the model, all dyadic behavior is measured in terms of the rotated factor scores of the basis dimension in B-space. In A-space, attribute distances are measured also in terms of factor score difference of the rotated basis dimensions of the space. Thus, what is forecast are the factor scores of each individual factor.

In this study both behavioral models (MRM and CRM) are built with the basic assumption that the decision framework of one nation will be unchanged over time. This means that the relative importance of the various attribute distances to the decision-maker's perception, as well as the preference pattern for the choice of foreign behavior by the decision-maker is invariant, though actual distances may change over time.

Thus, the test of the model is actually the test of the invariant nature of the perceptual and behavioral frameworks of the

decision-makers (in MRM, the two frameworks are geared into one decisional framework).

In this study, the test was performed with the 1963 data. First, P, the perceptual framework of Chinese decision-maker, and Q, the behavioral preference system (in MRM, P only) were calculated from the analyses of the 1955 data. Then, applying these P and Q of 1955 to D of 1963, the W of 1963 was calculated (\hat{W}_{63}) . The comparison of the \hat{W}_{63} to \hat{W}_{63} , the observed scores, is a test of the applicability of the models.

The forecasting equation for the MRM is the same as the original MRM equation (equation 10) with exception of the P of 1963, which is replaced with the P of 1955.

For the CRM, however, Q on the left-hand side of the original model (equation 18) is moved to the right-hand side. The original model was

$$W_{mxq} Q_{qxq} = D_{mxp} P_{pxq} + U_{mxq}$$
 (18)

Post-multiplying both sides of the equation by Q'qxq, 91 we get

$$M^{mxd} \delta^{dxd} \delta^{dxd} = D^{mxb} b^{bxd} \delta^{dxd} + \Omega^{mxd} \delta^{dxd}$$
 (51)

 $^{^{91}}$ In this study, the actual Q matrix was found to be a non-singular square matrix, and \hat{W} was calculated by post-multiplying both sides by Q^{-1} directly. The equation was $W_{mxq} = D_{mxp} P_{Dxq} Q_{qxq}^{-1}$

Post-multiplying both sides by (Qqxq Q'qxq)-1 again,

$$W_{mxq} = D_{mxp} P_{pxq} Q_{qxq} (Q_{qxq} Q_{qxq})^{-1} + U_{mxq} Q_{qxq} (Q_{qxq} Q_{qxq})^{-1} (22)$$

If we replace P and Q of 1963 with those of 1955, then, our forecast \hat{W} (\hat{W}) is

$$\hat{\mathbf{w}}_{\mathbf{m}\mathbf{x}\mathbf{q}} = \mathbf{p}_{\mathbf{m}\mathbf{x}\mathbf{p}} \mathbf{p}_{\mathbf{p}\mathbf{x}\mathbf{q}} \mathbf{q}_{\mathbf{q}\mathbf{x}\mathbf{q}} (\mathbf{q}_{\mathbf{q}\mathbf{x}\mathbf{q}} \mathbf{q}_{\mathbf{q}\mathbf{x}\mathbf{q}})^{-1}$$
 (23)

To measure the goodness of fit between W and \hat{W} in both models, the product-moment correlations between each pair of corresponding vectors of W and \hat{W} was calculated. The mean value of all correlations also was calculated to see the overall fit (trace correlation equivalent).

In this study, the overall fit of the forecast values (\tilde{w}_{63}) from CRM must be equal to those from MRM, since we are using rotated basis dimensions produced with varimax rotation criteria, instead of raw variables.

The rotated basis dimensions are principal components of the space, and in MRM, we regressed each of these mutually orthogonal principal axes on the set of attribute distances. In CRM, through canonical regression procedure, we also rotated the factors of B-space to generate a set of orthogonal basis dimensions of the space (principal axes) which were projected into A-space such that each of the axes should have the maximum correlation with each of the rotated basis dimensions (principal axes) of A-space (the B-space basis dimensions projected into A-space are canonical variates of B-space, and

the corresponding A-space basis dimensions are those of A-space).

Therefore, the only difference between the two models--MRM and CRM-was that, in MRM, the rotation of the B-space basis was done externally
with separate factor rotation, while in CRM, the rotation was performed
internally as a part of the canonical regression analysis. But if we
had used intercorrelated raw behavior vectors, the results must have
been different.

(2) Forecasting Pattern Scores

In CRM, the behavioral pattern comprises more than two behaviors in the form of a linear combination. The overall pattern scores, which are the weighted sum of the scores of the behaviors involved in the pattern, then, is the canonical variate scores.

For example, if a specific pattern of Chinese foreign behavior is found as .80 trade + .50 negative communication, and supposing that for a particular dyad, China-Japan, the factor scores of trade is 2.00 and, for negative communication the dyad has the value of 1.00, then the overall pattern score of this particular behavioral pattern for China-Japan will be .80 x 2.00 + .50 x 1.00 = 2.10.

The forecasting of this pattern score with CRM was done with 1963 data. First, the P was calculated from the analyses of the 1955 data (P_{55}) which then weighted the distances in 1963 (D_{63}) . The results $(D_{63}P_{55})$, then were our forecast canonical variate scores, or the pattern scores of behavioral patterns in 1963 (\hat{W}_{63}) . These scores were compared to the observed behavioral pattern scores (canonical variate scores) in 1963 (W_{63}) using the 1963 weights (Q_{63}) .

Again product-moment correlations between each corresponding pair of canonical variate scores--forecast and observed--were calculated to measure the goodness of fit of the model to the data. The mean value of the squared correlations (trace-correlations) gave the overall fit.

CHAPTER V

VARIABLES AND DATA

5.1 The Population

In 1955, there were ninety-nine independent nations in the international system, and in 1963, there were one hundred and thirty-nine. 92 For this study, all smaller nations (population less than 500,000) and those which did not exist as independent nations at either time points have been deleted, 93 leaving eighty-two nations for which data were collected. These nations are listed in Table 1.

5.2 Variables

In this kind of study, there are no standard criteria for the inclusion or exclusion of variables. Practically, their selection is guided by research aims and relevant studies previously done on the subject. For instance, if we want to study the relationship between political stability and economic development in one nation, we need to select variables with which we can operationalize the two concepts, political stability and economic development. For political stability,

⁹²See Information Please Almanac: 1965, pp. 615-6.

⁹³For a comprehensive list of national political units, see Russett-Singer-Small, 1969. The 500,000 population criterion for deleting smaller nations is arbitrary. For further discussion, see the comments of both Michael Haas and George Modelski, et al., on the Russett-Singer-Small list, in the American Political Science Review, Vol. 62, No. 3, pp. 952-5.

TABLE 1
LIST OF NATIONS (N = 82)

I.D.			I.D.	*	
NO.	NAME OF NATION	CODE	NO.	NAME OF NATION	CODE
NO.			no.		
			,		
1.	Afghanistan	AFG	42.	Italy	ATI
2.	Albania	ALB	43.	Japan	JAP
3.	Argentina	ARG	44	Jordan	JOR
4.	Australia	AUL		Korea (DPRK)	KOľ
5.	Austria	AUS	46.	Korea (ROK)	KOS
6.	Belgium	BEL		Laos	LAO
7.	Bolivia	BOL		Lebanon	LEB
8.	Brazil	BRA	49.	Liberia	LBR
9.	Bulgaria	BUL	50.	Libya	LBY
10.	Burma	BUR	51.	Mexico	MEX
11.	Cambodia	CAM	52.	Nepal	NEP
12.	Canada	CAN	53.	Netherlands	NTH
	Ceylon	CEY	54.	New Zealand	NEW
14.	Chile	CHL	55.	Nicaragua	NIC
15.	China (PRC)	CHN	56.	Norway	NOR
16.	China (ROC)	CHT	57.	Outer Mongolia	OUT
17.	Colombia	COL	58.	Pakistan	PAK
18.	Costa Rica	COS	59.	Panama	PAN
19.	Cuba	CUB	60.	Paraguay	PAR
20.	Czechoslovakia	CZE	61.	Peru	PER
21.	Denmark	DEN	62.	Philippines	PHI
22.	Dominican Republic	DOM	63.	Poland	POL
	Ecuador	ECU	64.	Portugal	POR
24.	Egypt (UAR)	EGP	65.	Rumania	RUM
	El Salvador	ELS	66.	Saudi Arabia	SAU
26.	Ethiopia	ETH	67.	Spa i n	SPN
27.	Finland	FIN	68.		SWD
28.	France	FRN	69.	Switzerland	SWZ
29.	Germany (DDR)	GME	70.	Syria	SYR
30.	Germany (FRG)	GMW	71.		TAI
31.	Greece	GRC	7 2.	•	TUR
32.	Guatemala	GUA	73.	Union of South Africa	UNS
33.	Haiti	HAT	74.	USSR	USR
34.	Honduras	нол	75.	United Kingdom	UNK
35.	Hungary	HUN	76.	USA	USA
36.	India	IND	77.	Uraguay	URA
37.	Indonesia	Ins	78.	Venezuela	VEN
38.	Iran	IRN	79•	Vietnam (North)	Addin
39.	Iraq	IRQ	80.	Vietnam (South)	VTS
40.	Ireland	IRE	81.	Yemen	YEM
41.	Israel	ISR	82.	Yugoslavia	YUG
L			L		

we may select such variables as the number of persons killed in domestic violence, the number of anti-government demonstrations, and for economic development, gross national product per capita, the number of cars per one thousand persons, and the Engel's index.

The aim here was to assess the practical applicability of field theory in general and specifically, to find the structure of Communist China's foreign behavior patterns. The study is a general-type and not a specific research, in the sense that neither particular attributes nor behaviors were pre-selected in the proposed model. The study, therefore, required no particular set of variables to be included. The more general aspects of the attributes/behaviors of the nations the variables represented, the better.

For parsimony, however, the number of variables was reduced to a manageable size. Three subjective criteria were used in the actual selection: first, most, if not all, of the concepts which have been frequently adopted in current leading studies were included, so that the result of the study could be compared easily with other studies; second, data had to be available; and third, there had to be sufficient variance to be analyzed for China. 94

⁹⁴A good guideline for selecting "basic indicators" of major attribute and behavioral concepts of nations is given in Rummel, 1969a. Since this is a study of one nation's (China) foreign behavior, some variables which appear frequently in global studies are not adoptable, due to insufficient variance. For example, the variable "military action" had only two non-zero entries out of eighty-two dyads in the 1955 and the 1963 behavior spaces, and had to be eliminated. If more than eighty percent of the cases had the same value for a variable, it was excluded.

5.2.1 Attribute Variables

For attribute variables, the basic concepts (dimensions) delineated by the series of the Dimensionality of Nations (DON) Project studies 95 were adopted as the basic categories to select variables. The seven dimensions which appeared in Rummel's work (Rummel, 1969a) were economic development, power (= size), politics (= political orientation), foreign conflict, domestic conflict, Catholic culture (= cultural characteristics of the society), and density. These seven include virtually all the prominent concepts which are used in most of the international relations studies: power theory (e.g. Morgenthau, 1966; Organski, 1968), status theory (Lagos, 1963), 96 and the rank theory (Galtung, 1964).

Furthermore, these seven basic concepts were cross-checked against similar studies (Russett, 1967; Berry, 1960; and Cattell and Gorsuch, 1965) and were found to fit quite well with them. 97 For this reason, it seems safe to use these basic concepts to represent the variation in attribute space.

⁹⁵See Rummel, 1964, 1966, 1968b, and 1969a.

⁹⁶Lagos used three concepts: power, wealth, and prestige. Since "prestige" can be understood as a second-order concept based on power and wealth, it can be eliminated (see Rummel, 1970b).

⁹⁷For example, the intraclass correlation with Russett (1967) was .93 and with Berry (1960), .96. The technique for comparison employed was Ahmavaara's transformation analysis. See Rummel, 1969a, p. 134, and Ahmavaara and Markkanen, 1958, pp. 80-3. Only Rummel's politics dimension had a relatively low correlation with Russett's (-.54). In order to cover this gap, I selected relatively many variables in the category of politics.

Based on the above concepts, five basic categories were selected: power base, economic development, military power, political orientation, and ethno-religious attributes. In addition, a special category, relations with China was included. To measure the variation in these six categories, the following thirty-five variables were selected, based on a broad scanning of traditional studies about China's behavior and my own research experience (those with an asterisk are the marker variables of the seven dimensions in Rummel's study 98).

1. Power Base

*population: "Modified present-in-area counts" (Demographic Yearbook, UN, 1956, p. 21).

national land area: "The total area of the specified geographical units, including inland water as well as such inhabited or uninhabitable stretches of land as may lie within their mainland boundaries" (Demographic Yearbook, UN, 1956, p. 24).

*population density: Total population divided by national land area.

proportion of arable land: Arable land divided by total land area. Data were measured in percentages. Arable land refers to "land planted to crops ... land temporarily fallow, temporary meadows for mowing, and rubber plantation" (Yearbook of Food and Agricultural Statistics: Production, FAO, 1959, p. 388).

⁹⁸The marker variable of a dimension is the variable which loaded highest on that dimension. The reason for selecting marker variables is that the broadest possible variations in nations' attributes can be uncovered with the smallest number of variables. Selection of the highest loaded variables from each of the independent basic vectors virtually guarantees that the chosen variables would cover most of the variance in A-space which was originally contained in nearly one hundred different variables used in Rummel's original study (Rummel, 1966 and 1969b).

energy production: Includes the primary sources of energy: coal and lignite, crude petroleum, natural gas and hydro-electricity. All energy data were converted to metric ton equivalent of coal.

steel production: "The total production of crude steel, both ingots and steel for castings, whether obtained from pig-iron or scrap" (Statistical Yearbook, UN, 1960, p. 246).

gross national product: Total value of goods and services produced in a country in a year's time.

2. Economic Development

<u>literacy</u> rate: Literates/population ten years of age or older. Literacy is defined as the ability to read and write.

*energy consumption per capita: Energy includes solid fuels, liquid fuels, natural and imported gas, and hydro- and imported electricity. All energy is measured in kilograms of coal which has equivalent heat.

telephone per capita: Telephone includes public and private telephones installed which "can be connected to a central exchange" (Statistical Yearbook, UN, 1960, p. 375).

population per physician: Physician refers to "all persons fully qualified or certified from a medical school" (Statistical Yearbook, UN, 1964, p. 651).

gross national product per capita: Gross national product divided by total population.

non-agricultural population/population: Non-agricultural population is the difference between the total population and the agricultural population. Agricultural population is defined as "all persons who depend on agriculture for a livelihood, that is to say, persons actively engaged in agriculture and their non-working dependents" (Yearbook of Food and Agricultural Statistics: Production, FAO, 1959, p. 389).

3. Military Power

<u>size of armed forces</u>: Number of military personnel. Civilians employed by the armed forces were excluded.

number of combat airplanes: Combat airplanes include fighter, fighter-bomber, bomber, attacker, interceptor, and armored reconnaissance planes.

defense expenditure: It includes total current and capital outlays.

4. Political Attributes

"bloc membership: Rating: 0 = Communist bloc membership, 1 = neutral bloc, 2 = Western bloc. Communist and Western bloc membership is determined by military treaties or alliances with the Soviet Union or the United States. The neutral bloc is a residual category.

Communist party membership/population: The number of party members is the estimate of the U.S. State Department.

*killed in domestic violence: Any deaths resulting directly from violence of an intergroup nature within a nation, thus excluding deaths by murder and execution.

*killed in foreign violence: The total number of deaths resulting directly from any violent interchange between countries.

<u>U.S. economic aid received</u>: Economic aid received from the Soviet Union.

colonialism: Rating: 0 = has been colonized in the past
fifteen years, 1 = neither possessed colony nor was colonized,
2 = has possessed at least one colony in the past fifteen years.

freedom of group opposition: Rating: 0 = political opposition not permitted; groups not allowed to organize for political action; 1 = restricted political opposition allowed, groups free to organize politically, but oppositional role limited and they may not campaign for control of government; 2 = political opposition mostly unrestricted.

trade with Western bloc: Included both exports and imports. The Western bloc includes the following countries: AUL, BEL, CAN, CHT ('63 only), DEN, FRN, GMW, GRC, ITA, JAP ('63 only), KOS ('63 only), NTH, NEW, NOR, PAK, PHI, POR, TAI, TUR, USA, UNK.

trade with Communist bloc: The Communist bloc includes ALB, CHN, CZE, GME, HUN, KON, POL, RUM and USR.

trade direction index: The index was calculated with the following formula.

trade with Western bloc + (trade with Western bloc + trade with Communist bloc)

5. Ethno-religious Attributes

*Roman Catholics/population: in percentages.

Protestants/population: in percentages.

Moslems/population: in percentages.

Buddhists/population: in percentages.

<u>languages</u>: Number of languages with membership exceeding one percent of the population. Language here refers to the "mother tongue."

6. Relation with China

Chinese population/population: Rating: 0 = none, 1 = 0-100, 2 = 101-1000, 3 = 1,001-10,000, 4 = 10,001-100,000, 5 = 100,000-1 million, 6 = more than 1 million or more than ten percent of the population, 7 = more than fifty percent of the population, 8 = more than ninety percent of the population.

geographical distance from China: Distances are between capitals and were measured in centimeters on a twelve inch globe.

attitude toward Chinese issue in UN voting: Rating: 0 =
favorable to China, 1 = neutral (abstention and absence),
2 = unfavorable.

The variable names and the corresponding codes used in this study are given in Table 2, and the data with sources and footnotes are given in Appendix I-A.

5.2.2 Behavioral Variables

For behavior space, the basic unit for behavior is a dyad, a pair of nations with one as the actor and the other as the object. In other words, the directed behavior of one actor to a particular object nation is defined as "behavior." In this study, there is only one actor--China; and, all dyads are China+other nations. Since the number

TABLE 2
LIGT OF ATTRIBUTE VARIABLES

VARIABLE NUMBER	VARIABLE NAME	CODE
1	population	POPUL
2	national land area	AREAT
3	population density	DENST
4	proportion of arable land	ARLND
5 6	energy production	ENPRO
6	steel production	STPRO
7	gross national product	GNPTL
8	literacy rate	LITRC
9	energy consumption per capita	ENCON
10	telephone per capita	TELPH
11	population per physician	PHYSI
12	GNP per capita	GNPPC
13	non-agricultural population	NAGPO
14	geographical distance from China	GEODS
15	size of armed forces	FORCE
16	number of combat airplanes	COMPL
17	defense expenditure	DEFEX
18	bloc membership	BLOCM
19	communist party membership	COMST
20	killed in domestic violence	KILLD
21	killed in foreign violence	KILLF
22	U.S. aid received	USAID
23	U.S.S.R. aid received	URAID
24	attitude toward China issue in UN voting	TOVNU
25	colonialism	COLON
26	Roman Catholic/population	CATHL
27	Protestants/population	PROTS
28	Moslems/population	MOSLM
29	Buddhists/population	BUDDH
30	languages	LANGN
31	Chinese/population	CHINS
32	freedom of group opposition	GOPPO
33	trade with Western bloc	WTRAD
34	trade with Communist bloc	CTRAD
35	trade direction index	ITRAD

Definitions of the variables are given in the main text.

of cases (nations) is eighty-two, the number of dyads is eighty-one.

Data were collected for all eighty-one dyads.

To select the behavioral variables, I again examined the ten basic dimensions delineated by Rummel: 99 salience, emigration and communication, UN voting, foreign student, export, international organization, official conflict behavior, diplomatic representation, self-determination voting, anti-foreign behavior.

Unlike the A-space variables, the conceptual map was not directly applicable to this study. Although good for global studies, the concepts were inadequate for a one-actor dyadic study, mainly because we cannot expect sufficient variances for many of the variables with which the concepts were operationalized. For example, one of the most important behavior of Communist China to be explained is her military conflict with her neighbors. But for most of the variables which were frequently used to measure military conflict, i.e. war, discrete military action, maneuver, border clash, however, there was little variation—only two out of eighty—one dyads had non-zero entries (CHT and IND). Another important behavior was China's political interaction with others. This is usually measured with the political activities (voting) in the United Nations. For China, however, the UN roll call votes could not be used since she had never been a member of the organization.

⁹⁹The ten dimensions are a composite of four accumulated studies done by Rummel. See Rummel, 1969a, pp. 140-1.

Considering these circumstances, I chose the following seventeen variables in four categories.

1. Economic Behavior

export to the object: Total export, f.o.b. price in U.S. dollars, during the year.

import from the object: Total import, c.i.f. price in U.S.
dollars, during the year.

economic aid to the object: Includes grants and long-term loans.

economic visit to the object: Includes government officials and civilians. Economic visit is defined as the visit, the main declared purpose of which is economic--trade conference, negotiation, market survey, etc.

economic visit from the object: Same as above.

2. Political Behavior

diplomat sent to the object: Includes only embassies. Rating: 0 = no diplomatic relations and no envoy; 5 = agreed to establish diplomatic relations, but no envoy has arrived yet; XX = 10 + the number of years since the envoy arrived.

diplomat from the object: Same as above.

treaties signed: Includes only bilateral treaties. Following the Chinese practice, a joint communique signed by the governments' official representatives is regarded as a treaty.

<u>co-membership in international non-government organizations:</u> Includes all NGO's. 100

official political visit to the object: Includes only the visits by the following officials: the President of the People's Republic of China (PRC), Prime Minister, Deputy-prime Ministers, Minister of Foreign Affairs, Minister of Defense, Chairman of the Central Committee of the China Communist party (CCP), and the Chairman of the Standing Committee of the People's Congress of the PRC.

¹⁰⁰China was a member of only one IGO (Joint Nuclear Research Institute, 1956). The IGO membership was not used as a separate variable in this study.

official visit by the objects: Includes only the visits by the heads of government and cabinet members.

3. Verbal Communication

positive communication: Directed communication by the policy makers who are defined to include, the Chairman of the Central Committee of the CCP, the President of the PRC, the Chairman of the Standing Committee of the People's Congress of the PRC, the Prime Minister, the Minister of Foreign Affairs, the Minister of Defense, the Central Committee of the CCP, the presidium of the PRC, the Standing Committee of the People's Congress, and the Cabinet of the PRC. The data were collected from the articles of the Jen-min Jih-pao using the following formula

$$S = \sum_{i=1}^{f} (L_i \times D_i)$$

where S is the score of the total positive communication to the object,

L is the size of the article

1 = less than 30 lines or equivalent

2 = 30-100 lines or equivalent

3 = 100-200 lines or equivalent or the second top

4 = more than 200 lines or equivalent or the top

D is the cooperative scale

1 = friendly comment

2 = formal congratulations

3 = verbal support or appraisal of the object's policy

4 = suggestion of support

6 = decision of supportive action

f is the total number of articles which contain the verbal communication during the year.

makers (definition same as above), with the same formula with a difference in meaning only for the D scale, where

D is the degree of hostility scale

1 = critical comment

2 = accusation, agitation, or the equivalent

3 = demand of corrective actions

4 = warning (without specified sanctions)

5 = threat (with concrete sanction)

6 = decision of hostile action

4. Salience (Concern)

unofficial political visit to and from the object: The visits by the leaders of the parties of the object nations which were currently not in power (e.g. Italian Communist party, Japanese Communist party)/the visits by China's party leaders with the non-ruling political party leaders of the object nations. Measured in terms of frequency.

degree of official concern: Data were collected from the Jenmin Jih-pao using the following formula:

$$C = \int_{i=1}^{f} R_i$$

where C is the degree of concern score

R₁ is an article reporting about the object nation, without regard to the subject matter, scaled according to the length of the article (scales are same as for positive communication)

f is the total number in a year.

cultural visit to the object: All non-political, non-economic visits by the Chinese citizen disregarding the rank of the person.

cultural visit from the object: Same as above.

The variable names and corresponding codes used in this study are presented in Table 3, and data with footnotes and sources are given in Appendix I-B. The data were difficult to collect, especially for B-space variables, since China has revealed few statistics. For variables 1-7, China's own publications (mainly the Yearbook) were used primarily, with a thorough check against the publications of the China watchers. For variables 9-17, however, data were generated directly from Jen-min Jih-pao. 101

¹⁰¹With a specially designed code sheet, the contents of all articles contained in the 1955 and 1963 issues of the Jen-min Jih-pao (730 daily issues) were converted into codes. A total of 20,770 code sheets were filled and all necessary data were generated from these master code sheets.

TABLE 3
LIST OF BEHAVIORAL VARIABLES

VARIABLE NUMBER	VARIABLE NAME	CODE
1	export to the object	EXPOR
5	import from the object	IMPOR
3	economic aid to the object	ECAID
14	diplomat sent to the object	DIPFP
5	diplomat from the object	DIPTP
6	treaties signed	TREAT
7	co-membership of NGO	CONGO
8	official political visit to the object	POFVT
9	official political visit from the object	POFVF
10	unofficial visit from the object	PNOVF
11	economic visit to the object	ECOVT
12	economic visit from the object	ECOVF
13	cultural visit to the object	CULVT
14	cultural visit from the object	CULVF
15	official concern	CONCN
16	positive communication	POCOM
17	negative communication	NECOM

Definitions of the variables are given in the main text.

5.3 Missing Data Estimation

In general, there are four approaches to solving the problem of missing data in cross-national data: 1) the order of the data matrix can be reduced until only the complete data remain, 2) missing data may be treated as blanks in the analysis, 3) some of the missing data may be estimated judgementally, or 4) all the data may be estimated by ratings, mean values, measurement scale reduction, factor analysis, or regression analysis (see Wall and Rummel, 1969, p. 1).

In this study, methods 3) and 4) were applied jointly. First, so far as I deemed it adequate, I estimated the missing data subjectively based on my knowledge. Then, I estimated the remainder using the MISDAT program developed by Wall and Rummel. 102 With this method, the available data for each variable were regressed on the available data for the other variables to determine regression estimates for the missing data. Then, with the estimated data included, the computations were repeated again and again until the estimates converged to stable values for the missing data. This process was applied to all variables with missing data. In the data presented in Appendix I-A and I-B, those which were subjectively estimated were marked with the letter "R" (following the figures) and those which were machine-estimated were marked with "M."

¹⁰²See Wall and Rummel, 1969, pp. 1-2. This is a kind of regression estimate method. The recent version of the computer program for MISDAT, called the Dynamic Missing Data Estimation Program (the algorithm remains unchanged) is available at the DON Project.

5.4 Data Transformation

Although the normalities of the distribution of each variable are not required in this kind of population study, 103 the heavily skewed nature of the variables affects the overall relations among variables. Even the addition of one extreme outlying observation may change completely the correlation between two variables in a small population. This has been one of the most serious problems in working with empirical data. The prevailing practice has been to transform the data in order to improve the normalcy of frequency distribution, for example, by taking the logarithm of the original values.

Practically, however, transformation brings another problem-its justification. Why must a proposed relationship among the
variables appear with the data transformed in a particular way? The
proposed relationship must hold regardless of the units of measurement
employed if it is to be a general lawlike relationship.

justified. In the actual world data, for example, the U.S.A. has extremely high values for various variables measuring power and economic development. These extreme values obviously affect the correlations among the variables, and we shall have patterns of a nation's behavior which, without the U.S.A., may be completely different. Thus, we cannot justify the exclusion of the extreme case, if

¹⁰³If our study is a sample study from which the relations among variables in the universe are supposed to be inferred, we need multivariate normal distribution (at least an approximation) of each variable against all other variables. Otherwise, we cannot measure the reliability of derived statistics by standard indices like standard error.

we want to look at a world phenomenon as it is. And again if the proposed relationship among the variables is a lawlike generalization, the basic form of that relationship must appear whether we exclude certain cases or not.

Based on this simple argument, I designed a unique method to assess the reliability of my analyses. First I did all the analyses with the data in its original form. Then, I transformed all skewed variables which exceeded the value of 2.5, 104 and analyzed them.

Third, I reduced the number of cases to fifty-six from the original eighty-two by eliminating those nations whose entries are zeroes across more than ten variables out of seventeen behavior variables and did the same analysis. 105 And, finally, the reduced matrix was transformed and reanalyzed.

Then, the results of the four different analyses were cross-checked against each other to get the stable relationship among the variables, which were free from data manipulations. From now on, these four data sets will be referred to as 0 (original data set), T (transformed data set), R (reduced data set), and RT (reduced and transformed data set).

 $^{^{104}}$ This was done for both the 1955 and the 1963 spaces. In $\Lambda-$ space, nineteen variables and in B-space six variables were transformed. For all these twenty-five variables, the square roots of the original values were taken.

¹⁰⁵The excluded nations are: BOL, CHL, COL, COS, DEN, DOM, ECU, ELS, ETH, GRC, GUA, HAI, HON, IRE, JOR, LBR, LBY, MEX, NIC, PAN, PAR, PER, POR, SPN, URA, and YEM.

CHAPTER VI

ATTRIBUTE DIMENSIONS

Theoretically, there may be an infinite number of concepts with which a nation's attribute can be described. Since there is no rule for which concept one must include in his study (theory), the decision of selecting concepts has to be made by the one who builds the theory. One field theory, however, the concepts are not specified by the theory building. The theory simply defines a general relationship between a nation's attribute distances from the object nation and her behavior toward the object nation in terms of basis dimensional vectors of both A- and B-spaces without specifying with what concepts the basis should be delineated.

In this kind of general theory, the ideal set of attribute variables, therefore, is one which exhausts all the variability in nations' attributes. In practice, however, this is unavailable, and in this particular study, thirty-five variables were selected on the basis of substantial significance--mainly the popularity of the concepts in current leading studies.

Field theory, however, assumes that attribute space has a finite number of dimensions, from which all concepts are derivable as

¹⁰⁶However, there are some practical criteria: 1) the concepts must be meaningful for interested people; 2) the smaller the number of concepts in a theory, the better; 3) the meanings of the concepts must be as clear as possible. A comprehensive guideline for selecting indicators of the concepts is given in Rummel, 1969a.

a linear combination of the basis dimensional concepts. This means that once the basis dimensions are known, we can represent all the variability in attributes with a set of dimensional vectors no matter how many original variables there were. Practically, however, we cannot discover the exact basis dimensions, because empirically we are looking for a basis for a set of finite variables. The one we deal with, therefore, is an approximate basis of the space. In this study, unless specified otherwise, this approximated basis of the space will be referred to.

In order to delineate the basis dimensions of attribute space, the space consisting of the aforesaid thirty-five variables was factor analyzed. The principal component technique and the component factor model were used. 107 To get the simplest factor structure (the clearest clustering of variables), they were rotated orthogonally using the variance criteria. 108

¹⁰⁷Field theory deals with all variances, common as well as specific, of the variables; therefore, the component model was used.

¹⁰⁸An oblique rotation was avoided, because the resulting bases were to be used in multiple regression analysis and canonical analysis. If the factors are mutually interrelated, we cannot distinguish the contribution of the individual factors from the interaction effects among them.

The dimensionality of the space was fourteen, 109 and each factor was labeled substantively by examining highly loaded variables on the dimensions. The fourteen rotated factors of the original data are presented on Table 4, and the labels of the factors with the variables they represent are given in Table 5.

To assess the reliability of the analysis, I repeated the factor analysis (the same factor technique and rotation procedure) three more times, each time with one of the three remaining parallel data sets I mentioned earlier (5.4): transformed data (T), data with reduced cases (R) and reduced and transformed data (RT). Then, the factor loadings of the variables on each basis dimension of the three data sets were cross-checked against the corresponding loadings of the original data set. Comparisons were made in terms of the product-moment correlations between the factors of the two matrices (original data and the other) after the factors of one matrix (the other) were rotated to a least squares fit to those of another matrix (original data set).

¹⁰⁹In the component factor model, the dimensionality is usually equal to the number of the original variables. For practical purposes, we cut off relatively insignificant factors. To determine the number of factors, I considered the following facts: 1) both in the 1955 and the 1963 spaces, fourteen factors cover more than 90 percent of the total variance, 2) from the fifteenth eigenvector, the eigenvalues do not reduce much (scree test; the eigenvalue of the fourteenth eigenvector was .56 and .54 for the 1955 and 1963 spaces, respectively), which means that the variances loaded on the remaining eigenvectors may safely be assumed to be random errors, and 3) in the four different analyses (0, T, R, and RT), all the fourteen factors were identifiable across the different data sets.

 $^{^{110}\}mbox{For}$ the factor comparison, Ahmavaara's transformation method was employed.

TABLE 4

FACTOR LOADINGS OF 35 A-SPACE VARIABLES

ON FOURTEEN BASIS DIMENSIONS

(1) 1955 ORIGINAL DATA

VAF	RIABLES	I POWER	II PORIE	III DEVEL	IV WESTC	V URAID	VI AGRIC	VII ORIEN
1	POPUL	-29	03	0 6	-05	83	05	15
2	AREAT	-46	06	-16	08	39	-39	07
3	DENST	05	-05	-14	04	04	<u>86</u>	16
4	ARLND	-07	2 7	-11	07	. 08	<u>79</u>	- 25
5	ENPRO	-97	-02	-17	-01	06	<u>01</u>	01
6	STPRO	-96	-02	- 20	02	03	04	01
7	GNPTI.	<u>-98</u>	- 02	- 18	01	08	-00	03
8	LITRC	-11	10	<u>-71</u>	40	02	19	-04
9	ENCON	- <u>51</u>	04	- 73	o 6	-02	21	-03
10	TELPH	-33	-07	- 86	-07	-04	-05	02
11	PHYSI	01	09	- <u>86</u>	-04	-05	02	06
12	GNPPC	-47	-08	-80	04	-04	00	-03
13	NAGPO	-13	-08	- 79	27	-07	17	-08
14	GEODS	-02	-44	-03	49	-15	-37	- 50
15	FORCE	-68	15	-06	04	54 08	-04	10
16	COMPL	-97	04	-1 5	01	08	-07	01
17	DEFEX	<u>-98</u>	-02	-1 5	-02	03	-01	04
18	BLOCM	-00	<u>-85</u>	-08	14	-20	-05	02
19	COMST	-02	<u>78</u>	-01	18	-03	23	-04
20	KILLD	03	14	-01	02	08	06	-01
21	KILLF	-10	19	04	01	-01	Oh	11
22	USAID	02	-20	25	-10	-0 6	30	13
	URAID	00	17	07	03	<u>90</u>	07	05
24	UNVOT	-04	<u>-82</u>	05	19	-21	-03	-08
25	COLON	-16	-30	- <u>54</u>	19	12	10	-26
26	CATHL	04	-33	12	74	-04	02	-34
27	PROTS	-03	08	-84	-11	-01	-11	-07
	MOSLM	02	- 05	36	-83	-06	-10	-2 4
	BUDDH	05	29	22	01	-06	-06	7 <u>5</u> 01
	LANGN	-04	03	13	-13	10	-04	
	CHINS	-20	-11	02	01	25	-01	<u>86</u>
	GOPPO	00	-42	-22	09	-09	02	02
	WTRAD	<u>-60</u>	-2 6	-54	-04	-02	20	08
34	CTRAD	-29	-02	-46	-08	04	23	-10
35	ITRAD	01	- <u>77</u>	-09	01	12	15	-16
	OF TOTAL	18.9	10.3	14.6	5.5	6.3	6.0	5.8

TABLE 4
(CONTINUED)

FACTOR LOADINGS OF 35 A-SPACE VARIABLES ON FOURTEEN BASIS DIMENSIONS

(1) 1955 ORIGINAL DATA

VARIABLES	VIII DIVER	IX WELFA	X Posta	XI CTRAD	XII COLON	XIII FCONF	XIV USAID
1 POPUL	-2 3	-01	12	-09	04	01	09
2 AREAT	-41	-06	03	- 23	-13	14	07
3 DENST	05	- 05	- 05	-21	03	08	07
4 ARLND	02	08	20	11	-07	-04	16
5 ENPRO	01	-00	-01	- 02	-01	01	-04
6 STPRO	-01	01	-02	-10	00	014	-00
7 GNPTL	-02	00	01	-03	02	02	01
8 LITRC	19	-26	0 6	-05	03	-05	91
9 ENCON	0.2	-09	03	-1.0	-0 3	-07	-21
10 TELPH	09	-02	-03	09	13	-09	-05
11 PHYSI	-06	92	00	-01	-03	-06	- ÚO
12 GNPPC	07	<u>−08</u>	-01	-02	11	-04	- 13
13 NAGPO	11	-22	09	-17	04	೦೦	-03
1h GEODS	10	-10	08	01	-03	-07	-14
15 FORCE	-20	-07	-02	-1 6	-13	17	1.3
16 COMPL	-06	-01	-02	00	-01	06	04
17 DEFEX	04	00	01	05	01	02	-02
18 BLOCM	14	-01	-05	-08	14	-17	16
19 COMST	-01	-21	19	-03	-30	-01	-12
20 KILLD	03	-00	96	02	-06	15	-0.1
21 KILLF	-07	-06	16	-05	-03	92	-07
22 USAID	-19	-15	-01	-04	00	-10	76
23 URAID	10	-04	-01	10	-08	-05	$-\frac{13}{13}$
24 UNVOT	-02	- 15	-09	-19	-08	-13	-01
25 COLON	29	15	-07	-18	-38	01	18
26 CATHL	15	-17	10	-01	-03	-08	-21
27 PROTS	-23	14	-06	-04	-02	14	07
28 MOSLM	-03	-10	06	-07	-0 8	-09	-08
29 BUDDH	21	22	-10	02	12	06	19
30 LANGN	-90	07	-03	07	01	05	11
31 CHINS	-15	-09	08	02	- 05	08	-05
32 GOPPO	03	-03	-09	-09	80	-04	02
33 WTRAD	07	-00	02	-31	08	-09	-14
34 CTRAD	08	00	-03	<u>-69</u>	13	12	05
35 ITRAD	-11	-17	10	40	07	05	-07
% OF TOTAL VARIANCE	4.2	3.6	3.2	3.0	3.0	3.1	2.7

TABLE 4
(CONTINUED)

FACTOR LOADINGS OF 35 A-SPACE VARIABLES ON FOURTEEN BASIS DIMENSIONS

(2) 1963 ORIGINAL DATA

VARIABLES	I POWER	II PORIE	III DEVEL	IV WESTC	V URAID	VI AGRIC	VII ORIEN
1 POPUL	-41	-13	06	05	02	02	-07
2 AREAT	-64	-0 6	-08	-02	01	-2 8	-03
3 DENST	05	03	-13	13	-07		-04
4 ARLND	- 03	-38	03	-15	17	<u>91</u> 66	-08
5 ENPRO	-97	-03	-17	-01	-02	-07	02
6 STPRO	-94	-02	-21	03	-01	0 9	-03
7 GNPTL	- 95	05	<u>-24</u>	02	- 05	01	-01
8 LITRC	-09	-11	- <u>51</u>	- 03	02	13	-22
9 ENCON	-42	-1 6	- 78	-1 2	-08	15	-10
10 TELPH	-24	12	- <u>90</u>	01	01	- 06	-02
11 PHYSI	04	-03	14	08	02	-02	09
12 GNPPC	- 36	11	- <u>87</u> - <u>76</u>	- 05	- 05	03	-04
13 NAGPO	- 12	11	-76	-21	02	21	-10
14 GEODS	02	38	03	<u>-66</u>	-06	- 36	-33
15 FORCE	- <u>82</u> - <u>87</u>	-1 9	-06	<u> </u>	13	05	-02
16 COMPL	-87	-15	-10	01	11	-04	-00
17 DEFEX	-94	01	-17	00	- 03	- 06	-00
2.3 BLOCM	02	8 9	-06	-08	07	08	-11
19 COMST	-07	-83	-02	-14	10	16	-13
20 KILLD	01	07	o 6	12	02	00	-02
21 KILLF	-04	- 05	11	05	03	09	08
22 USAID	03	16	19	02	-08	09	08
23 URAID	05	<u>-57</u>	12	04	- 60	-01	03
24 UNVOT	-06	7 5	11	- 28	-04	-00	-19
25 COLON	-16	15	-40	-1 6	-04	19	-03
26 CATHL	05	30	16	-60	-10	03	-53
27 PROTS	-05	-10	-78	05	28	-14	-07
28 MOSLM	04	-01	25	-09	-03	-07	92
29 BUDDH	03	- 05	26		-02	-02	-1 9
30 LANGN	-09	- 05	12	<u>89</u> 04	-01	-04	07
31 CHINS	-26	07	04	54	- 21	-01	-2.2
32 GOPPO	01	<u>63</u>	<u>-41</u>	<u>54</u> -12	13	01	-Of
33 WTRAD	-61	27	<u>-56</u>	01	-19	29	-01
34 CTRAD	-43	-58	-07	-09	11	11	-11
35 ITRAD	07	91	-08	-13	07	- 02	01
% OF TOTAL VARIANCE	19.1	13.2	13.5	6.2	1.9	5.1	4.3

TABLE A (CONTINUED)

FACTOR LOADINGS OF 35 A-SPACE VARIABLES

ON FOURTEEN BASIS DIMENSIONS

(2) 1963 ORIGINAL DATA

VARIABLES	VIII DIVER	IX WELFA	X POSTA	XI CTRAD	COLON	XIII FCONF	XIV USAID
1 POPUL	09	04	-10	12	()14	-59	<u>57</u>
2 AREAT	19	-01	-02	<u>55</u>	02	- <u>59</u> -21	09
3 DENST	-06	-07	-01	07	02	-16	01
4 ARLND	05	-05	03	-28	31	15	20
5 ENPRO	05	-02	-01	-02	02	-06	-01
6 STPRO	03	-04	-02	18	01	03	-03
7 GNPTL	-04	-02	01	-1 5	04	02	01
8 LITEC	-16	-66	15	12	12	07	00
9 ENCON	-06	-14	01	-00	02	05	-12
10 TELPH	-08	-08	-02	-10	80	01	-04
11 PHYSI	-02	9 0	09	02	-03	00	-02
12 GNPPC	-07	-1 5	-04	-04	05	07	- 01
13 NAGPO	-08	-37	-11	14	01	04	09
14 GEODS	-13	-07	-07	00	0 2	20	-07
15 FORCE	09	-05	04	26	05	-34	12
16 COMPL	14	-04	01	38	04	-04	-00
17 DEFEX	-05	-01	01	-21	03	-02	- 01
18 BLOCM	-10	-08	08	-01	07	07	02
19 COMST	-01	-18	67	02	-11	-02	-12
20 KILLD	-03	04	<u>94</u>	00	-11	01	12
21 KILLF	-03	03	<u>-02</u>	-00	-02	-94	-03
22 USAID	1.9	-02	20	-01	-08	0.1	84
23 URAID	04	- 02	-05	-10	80	00	47
24 UNVOT	-00	- 31	14	-02	- 05	- 02	-20
25 COLON	-05	-1 2	-20	00	<u>78</u>	-01	05
26 CATHL	26	- 22	-07	04	-03	12	-11
27 PROTS	20	19	02	1.9	20	03	~ 03
28 MOSUM	65	1.6	-03	-03	-03	02	03
29 BUDDH	-11	06	05	- 03	-15	0.5	-04
30 LANGE	94 16	05	-03	0.0	-03	-03	18
31 CHINS		-04	19	06	05	-54	02
32 GOPPO	-04	-31	-24	02	-14	1.5	26
33 WTRAD	-12	-02	-05	-09	00	04	-01
34 CTRAD	16	-11	02	<u>59</u>	-04	05	-03
35 ITRAD	07	13	06	-10	00	-05	0,4
% OF TOTAL VARIANCE	3.9	5.3	3.4	3.4	2.5	5.3	4.4

TABLE 5

LABELS OF FOURTEEN A-SPACE

BASIS DIMENSIONS

FACTOR	FACTOR LABELS	FACTOR CODE	HIGH-LOADING VARIABLES
I	Power	POWER	ENPRO, STPRO, GNPTL, FORCE, COMPL, DEFEX
II	Political Orientation	PORIE	BLOCM, COMST, UNVOT ITRAD
111	Economic Development	DEVEL	LITRC, ENCON, TELPH, GNPPC, NAGPO
IV	Western Culture	WESTC	GEODS, CATHL
V	U.S.S.R. Aid	URAID	URAID
VI	Agricultural Culture	AGRIC	DENST, ARLND
VII	Oriental Culture	ORIEN	MOSLM, BUDDH, CHINS
VIII	Ethno-religious Diversity	DIVER	LANGN
IX	Welfare	WELFA	PHYSI
Х	Political Stability	POSTA	KILLD
XI	Communist Trade	CTRAD	CTRAD
XII	Colonialism	COLON	COLON
XIII	Foreign Conflict	FCONF	KILLF
XIV	U. S. Aid	USAID	USAID

Two kinds of correlation were calculated: the correlation between each pair of individual corresponding dimensions, and the correlation between the two super columns each of which was formed by connecting all columns in the matrix into one. The results of the comparison are presented in Table 6-1. As we can see in the table, all four data sets have very similar factor patterns: all the overall correlations of T, R and RT with O in both years exceed .98. This means that the factors can be derived using skewed data with some extreme outliers. This is an important finding, because it supports the generality of field theory, i.e., the basis dimensions of the space is not affected by the unit of measure of the dama. This finding suggests that we can rely on the original data for further analyses. From now on I will use the original data set as a primary data set for all analyses. For a loading by leading comparison the loadings of all four data sets are placed in one combined table in Appendix II-A.

It is also clear that the dimensions are sufficiently similar between the 1955 and the 1963 spaces. The factors of the two spaces were compared with the same technique used above. The results are summarized in Table 6-2. Considering measurement error, a correlation of .95 is sufficient to say that the factor patterns are the same across the two spaces. This stable factor pattern over time is significant, since this also supports axiom 3 of field theory.

The factor scores of these fourteen factors were calculated and the scores were used as the indicators of the A-space basis dimensions for testing the field theory models. The factor scores of the fourteen

TABLE 6-1
A-SPACE FACTOR PATTERN STABILITY AMONG DIFFERENT DATA SETS

	T. amono		195	5		1963		
	FACTORS	Ta	R	RT	T	R	RT	
1	POWER	.99 ^b	.98	.97	.99	1.00	.99	
2	PORIE	.99	1.00	.99	.98	.97	.99	
3 4	DEVEL	.98	.93	.91	.61	.98	.98	
4	WESTC	.99	.99	.98	.99	.72	.72	
5	URAID	.99	.92	.60	.68	.98	.71	
5	AGRIC	.97	1.00	.71	.97	.98	.98	
7	ORIEN	.99	.84	.96	.74	.83	.79	
7 8	DIVER	.98	.98	.89	-95	.93	.96	
9	WELFA	.94	.96	.91	.95	.99	.96	
10	POSTA	.93	.99	.93	.86	.91	.70	
11	CTRAD	.93	.97	.89	.99	.82	. 84	
12	COLON	.97	.86	.71	.97	.99	.96	
13	FCONF	.88	.91	.96	.97	.98	.98	
14	USAID	.75	.92	.69	.78	.97	.89	
OVER	ALL ^C RELATION	.99	.99	.98.	.98	.99	.98	

a T : Transformed data (N = 82)

R = Reduced data (N = 56)

RT = Reduced and Transformed data (N = 56)

^bCorrelation between the loadings of the factor of the indicated data with the loadings of the corresponding factor of the original data.

^CCorrelation between all loadings of the indicated data and those of the original data. Correlation was calculated between the two super columns, each of which was formed by connecting all columns in the matrix into one long column.

TABLE 6-2 A-SPACE FACTOR PATTERN STABILITY OVER TIME: FACTOR COMPARISON BETWEEN 1955 AND 1963 SPACES

	A AMOTIC		KINDS	OF DATA	
	FACTORS	o ^a	T	R	RT
1	POWER	1.00 ^b	.99	1.00	1.00
2	PORIE	.96	.96	•98	.98
3	DEVEL	•95	.77	•96	.97
4	WESTC	.89	.92	.94	.97
5	URAID	•33	.51	.62	.68
6	AGRIC	.95	.99	•95	• 9 9
7	ORIEN	.82	.91	•92	.92
8	DIVER	.88	.85	.92	.91
9	WELFA	.94	.48	.96	.32
10	POSTA	.93	•93	.92	.91
11	CTRAD	.72	.27	.65	.52
12	COLON	.58	. ઇંગ્ર	.86	.88
13	FCONF	.91	•95	.94	.94
14	USAID	.81	.66	.87	.04
	ERALL ^C RRELATION	•95	.96	•95	.96

 $a_0 = Original Data (N = 82)$

$$F_{63} = F_{55}^{L}$$

where L is the transformation matrix for least-square fit. Correlation was calculated between two super columns, each of which was formed by connecting all columns one after another, in the F_{63} and the F_{63} matrices, respectively.

T = Transformed Data (N = 82)

R = Reduced Data Matrix (N = 56) RT = Reduced and Transformed (N = 56)

bCorrelation between corresponding factors in 1955 and 1963 spaces. Signs are ignored.

^cCorrelation between actual 1963 factor loadings (F₆₃) and the 1963 factor loadings estimated from 1955 factor loadings from the following equation,

rotated factors are given in Appendix III-A.

The fourteen factors also show the stability of the factor patterns across different studies. A-space has been previously analyzed by others. 111 The fourteen factors of this study are almost the same as those of Rummel's finding. A comparison of the fourteen factors of this study and the fifteen factors of Rummel's study (Rummel, 1964b) is given in Table 7. This similarity across different studies 112 seems to indicate that there is a fundamental basis of nations' attributes and we shall be able to find a stable common indicator which could represent nations' attributes generally.

The fourteen factors also identified all popular concepts frequently adopted in international relations studies. As shown in Table 5, the most general concepts like power, economic development, political orientation emerged distinctly as the basis dimensions of the attribute space.

The first factor was labeled "power" dimension (POWER), on which defense expenditure (.98), 113 total GNP (.98), combat airplanes (.98),

¹¹¹See Sawyer, 1967; Rummel, 1967, 1968; Van Atta and Rummel, 1970. Rummel did a component analysis of 236 attributes for 82 nations (the same nations as in this study) on 1955 data and extracted fifteen basis dimensions (Rummel, 1964b). In Table 7, "Rummel's study" refers to Rummel, 1964b, "Orthogonally Rotated Factor Tables for 236 Variables."

¹¹²The similarity is partly due to the fact that seven marker variables of Rummel's study were included in this study. Even with this "hooking," the results are significant, since there were more different variables than similar variables in the two studies.

¹¹³ In parentheses are the loadings for the original data analysis, 1955 (0-55). For loadings for other analyses, see Appendix II-A. For simplicity, signs are dropped.

TABLE 7

A-SPAGE FACTORS:

COMPARISON WITH RUWMEL'S STUDY **

PACTORS		CHARLES CHARLE		FUMPER 'S
OF THIS STUDY	LOADING	GMAR BUBADAAV	LOADING.	FACTORS
POWER (Power)	.98 .98 .98 .97 .96 .68	befonse expenditure Gross national product Combat sirplanes Energy production Steel production Size of armed forces Population	.83 .85 .84 .66 .73	Power
FORIE (Political Orientation)	.85 .82 .78 .77	bloc membership UN voting on China issue Communist Party Membership Index of traile direction English titles translated/ all translated	.56	Political Orientation
DEVEL (Economic Development)	.86 .84 .80 .79 .73 .71	Telephone/pop Protestants/nop SSP/pop Non-agricultural pop/ pop Energy consumption/pop Literacy Pupils in primary school	.95 .65 .71 .97	Economic Wevelopment
WESTS (Western Culture)	.83 .74 .49	Moslem(negative)/pop Catholic pop/; on Geographical distance from China Air distance from 9.5. (negative)	.44	Catholic Colture
FCONF (Foreign Conflict)	.92 	Killed in forcism conflict Threats Accusations	.76 .85 .83	Foreign Conflict
AGRIC (Agricultural Culture)	.86 .79	Population/lun4 area Arable land/lund area	.90 .73	Size
ORIEN (Oriental Culture)	.75 .86 	Buddhist pop/pop Chinese pop/pop Mongolian pop/pop Religious groups > 12 pop	.56 .60 .65	Apien
POSTA (Political Stability)	.96 	Killed in domestic violence General strikes	.69	Dorestic Conflict
DIVER (Diversity)	.90	Language groups > 1% pop	.69	Ethnic- Linguistic Diversity

a Refers to Rummel, 1964b; "Orthogonally Rotated Factor Tables for 236 Variables."

energy production (.97), steel production (.96) and size of armed forces (.68) loaded highly. All these variables are well known indicators of power, 114 and we can give the label without hesitance.

The second factor on which bloc membership (.85), UN voting (.82), communist membership (.78) and trade direction index (.77) loaded highly is called the "political orientation" dimension (PORIE), since all of these variables are related, directly or indirectly, to the nation's political orientation. The third factor was labeled "economic development" (DEVEL), since telephone (.86), Protestants (.84), GNP per capita (.80), non-agricultural population (.79), energy consumption (.73) and literacy (.71) loaded highly on it. Except for Protestants, all variables are indicators of economic development. The variable Protestants loaded highly on this dimension, because most economically developed nations had a high proportion of Protestants among the population.

catholic population (.74), geographical distance (.66), and either Moslem population (.83; 1955) or Buddhist population (.85; 1963) loaded highly on the fourth factor. This means that the nations with a high percentage of Roman Catholics and with a low percentage of Moslems or Buddhists and geographically distant from China have high scores on this dimension. For this reason, I labeled the factor "Western culture" (WESTC). Only Soviet aid (.90) loaded highly on the

¹¹⁴Out of six highly loaded variables, DEFEX, COMPL and FORCE are indicators of current military power, while the other three-GNPTL, ENPRO and STPRO--are the indicators of the power capability of the nation, which shows the potential for future military power.

fifth factor which was, therefore, named "U.S.S.R. aid" (URAID).

The sixth factor was the one which Rummel labeled as the "density" factor in his recent study. 115 Two variables, density (.86) and arable land (.79), loaded highly on this factor which I labeled "agricultural culture" (AGRIC) in a sense that the factor indicates common characteristics of agricultural culture. The seventh factor was named "oriental culture" (ORIEN), because Chinese population (.86) and either Buddhist population (.75; 1955) or Moslem population (.92) loaded highly on it.

Only single variables loaded highly on the eighth to fourteenth factors and they were labeled, according to the concepts which the variables were supposed to represent. They were "diversity" (DIVER+LANGN), 116 "welfare" (WELFA+PHYSI), "political stability (POSTA+KILLD), "communist trade partner" (CTRAD+CTRAD), "colonialism" (COLON+COLON), "foreign conflict" (FCONF+KILLF) and "U.S. aid" (USAID+USAID).

¹¹⁵See Van Atta and Rummel, 1970, p. 11.

¹¹⁶The first codes are for factor names, and the latter, the codes of highest loaded variables.

CHAPTER VII

CHINA'S FOREIGN BEHAVIOR DIMENSIONS

For behavior space, the same factor analysis as in A-space analysis was carried out in order to delineate the basis dimensions of China's foreign behavior. The same criteria as for the A-space analysis were applied to determine the number of factors; as a result, seven factors were extracted. The factors are presented in Table 8.

A substantive label was given to each dimension in terms of the behavior most correlated with it. The first factor, on which export (.97) and import (.98) loaded highly, was labeled "trade" (TRADE). The second factor was named "formal diplomacy" (FDIPL), since diplomat from Peking (.90) and diplomat to Peking (.90) loaded highly on it. The third factor on which non-official political visit (.86), economic visit to the object (.83) and economic visit from the object (.66) loaded highly in both the 1955 and the 1963 spaces was labeled "informal diplomacy" (INDIP). The other remaining four dimensions were labeled with the names of the highest loading variables: economic aid (ECAID; .96), negative communication (NECOM; .99), co-membership in international non-governmental organization (CONGO; .89) and official political visit (POFVT; .84). The labels and the variables loading highly (>.50) are given in Table 9 to show the structure of each factor at a glance.

TABLE 8

FACTOR LOADINGS OF 17 B-SPACE VARIABLES
ON SEVEN BASIS DIMENSIONS

(1) 1955 ORIGINAL DATA

FACTORS	I TRADE	II FDIPL	III INDIP	IV ECAID	V NECOM	VI CONGO	VII VISIT
1 EXPOR	97	07	-13	02	03	-08	-03
2 IMPOR	97 98 13	09	-07	03	03	-07	-04
3 ECAID	13	17	- 02	96	02	01	05
4 DIPFP	2 2	90	-11	14	04	-13	23
5 DIPTP	23	90	-11	13	04	-18	21
6 TREAT	52	90 90 30	- 29	17	07	-3 2	39
7 CONGO	15	28:	-20	-01	-04	- <u>89</u> -13	11
8 POFVT	08	38	-02	04	03	-13	84
9 POFVF	- 03	80	-7 5	18	- 05	11	42
10 PNOVF	23	-02	- <u>86</u> - <u>66</u> - <u>83</u> -27	08	01	- 25	03
11 ECOVT	41	29	<u>-66</u>	- 23	01	-04	- 25
12 ECOVF	30	17	<u>-83</u>	-07	01	-17	02
13 CULVT	<u>67</u>	46	- 27	-10	05	-04	06
14 CULVF	54	37	- 30	-08	-04	- 37	42
15 CONCN	67 54 83 92 02	18	-3 9	11	- 50	-11	18
16 POCOM	92	20	-18	18	-01	-07	13
17 NECOM	02	-06	-01	-02	- <u>99</u>	-03	- 02
% OF TOTAL VARIANCE	28.8	15.1	17.1	6.7	6.2	7.3	8.5

TABLE 8 (CONTINUED)

FACTOR LOADINGS OF 17 B-SPACE VARIABLES ON SEVEN BASIS DIMENSIONS

(2) 1963 ORIGINAL DATA

FACTORS	I TRADE	II FDIPL	III	ECAID	V NECOM	VI	VII
1 EXPOR 2 IMPOR 3 ECAID 4 DIPFP 5 DIPTP 6 TREAT 7 CONGO 8 POFVT	-86 -83 -06 -07 -07 -21 -20	-23 07 -11 -96 -96 -28 -12	25 13 26 11 12 79	10 14 88 19 18 16 -14	07 18 -06 04 05 -06	02 -28 -00 -05 -07 -02 -88	-02 01 04 09 06 26 -16
9 POPVF 10 PNOVF 11 ECOVT 12 ECOVF 13 CULVT 14 CULVF 15 CONCN 16 POCOM 17 NECOM	-22 02 -13 -29 00 -17 -13 -06 -10	-36 -17 06 -23 -06 -22 -04 -07 -22 -06	20 26 88 74 96 88 50 -06	64 22 13 15 16 56 35 46 65	-03 -01 -01 -01 -03 -00 47 16 95	18 18 -15 13 -10 -08 -03 -05 20 -12	20 86 24 -30 -04 21 16 27 13 -03
S OF TOTAL VARIANCE	10.4	13.6	29.6	14.8	7.2	6.1	7.1

TWHER /
LABELS OF SEVEN B-SPACE BASIC DIMENSIONS

FACTOR	FACTOR LABELS	11111	HIDNA 170 VARIABLED
1	Trade	TRADE	EXPOR, IMPOR (155: MEMAU, OCHUT, BULVE, GONCE, POCOM)
II	Formal Diplomacy	FDIT:	DIPPP, DIPPP
III	Informal Diplomacy	INDIP	PROTE, RICVI, ROOVE (1998) THEAT, CULVI, COST, COST, COST, POROM)
IV	Economic Aid	ECAID	ECAID (163: POFVT, CULVT, POCOM)
v	Negative Communication	NECOM	RECOM
VI	NGO Co-Membership	CONGO	conco
VII	Political Visit	VISIT	POFVT

Again factor analysis was repeated three more times with three modified data sets--transformed data (T), reduced data (R), and reduced and transformed (RT)--to see the stubility of the pattern structure of B-space. The results of the comparison are summarized in Table 10-1, and the loadings of the four data sets (the above three and the original data set) are presented side by side in Appendix II-B for easy cross-checking.

As we can see in Table 10-1. Factor petterns were quite similar across the four data sets, except for the last two factors whose eigenvalues were so low (.50) that the variances were safely attributable to random error.

Unlike A-space, however, the factor patterns over time were not so stable. Although we could identify the same factors in both time spaces, the component variables of the first two factors were changed. In 1955, export, import, treaty, cultural visit to the object, cultural visit from the object, official concern, and positive communication loaded on the first factor, trade; and non-official political visit, economic visit to the object, and economic visit from the object loaded on the second factor, informal diplomacy (INDIP). In 1963, however, the last five variables of the first factor shifted to the second factor. This means that in 1955, for example, treaty signing, cultural interaction and political appraisal were deeply interrelated with trade, while in 1963, these activities were associated with informal diplomacy.

TABLE 10-1

B-SPACE FACTOR PATTERN STABILITY

AMONG DIFFERENT DATA SETS

FACTORS		1955			1963		
	Ta	R	RT	r.	R	RT	
1 TRADE	.98	1.00	.98	.96	1.00	.97	
2 FDIPL	.97	.99	.97	1.00	1.00	1.00	
3 INDIP	.99	.98	.97	.99	1.00	.99	
4 ECAID	1.00	1.00	.99	.97	.97	.97	
5 NECOM	1.00	1.00	.99	.99	.99	.99	
6 congo	.98	.98	. 98	.95	.95	. 94	
7 VISIT	1.00	.93	. 92	.97	.97	.99	
OVERALL ^C CORRELATION	.99	1.00	•99	.98	1.00	.99	

T = Transformed data (N = 81)

R = Reduced data (N = 55)

RT = Reduced and Transformed data (N = 55)

Correlation between the loadings of the factor of the indicated data with the loadings of the corresponding factor of the original data.

Correlation between all loadings of the indicated data and those of the original data. The correlation was calculated between the two super columns, each of which was formed by connecting all columns in the matrix into one long column.

One possible interpretation may be that China, at the beginning of her nationhood, was not fully prepared to launch a systemic diplomatic campaign. As a result, she did not "use" verbal communication (POCOM), for instance, as a tool of diplomacy. China simply traded with old friends (Communist countries) and praised old friends. Checking the factor scores, we can see that the nations high on this dimension are USR (8,47),117 VTN (1.37), GME (1.05), POL (.47), KON (.42), CZE (.36), and YUG (.27), and this partly supports this interpretation. By 1963, however, China's foreign policy was well structured and the policy-makers could play diplomatic games utilizing all available resources. As a result, for example, China strategically praised a certain nation to lure her into China's orbit, or in other words, she could verbally praise or direct cultural visits to a nation to insure the success of her political penetration plan (INDIP represented by PNOVT).

In 1955, for instance, positive communication was highly correlated with import $(.94)^{118}$ and export (.94). This means that verbal praise was directed to old Communist friends with whom China traded most. In 1963, however, positive communication was poorly correlated with import (.21) and export (.36) on the one hand, while on the other hand it showed fairly high correlations with economic aid (.67), economic visit from the object (.58), cultural visit to the object (.77),

¹¹⁷ The figures are standardized factor scores.

¹¹⁸ The figures are product-moment correlations.

cultural visit from the object (.69) and official concern (.75), which tells us that positive communication was linked to other penetration tools like cultural visits, economic aid and economic visits, etc.

In 1955, non-official political visit was not so much correlated with cultural visit to the object (.42) or cultural visit from the object (.46), while in 1963 it was strongly correlated with them (CULVT: .72, CULVF: .93), which again supports the hypothesis of systemized policy strategy of China in 1963.

As a whole, the informal diplomacy dimension of 1963 was different from that of 1955 in the sense that informal diplomacy represented by non-official political visit was reinforced by cultural visit to the object, cultural visit from the object, positive communication, etc. The factor scores on this dimension shows us to which nations China's informal diplomacy was oriented. The nations high on the informal diplomacy (INDIP) dimension in 1963 were, in descending order, JAP (7.09), 120 KON (3.40), PAK (2.02), INS (1.37), VTN (1.13), BRA (1.07), RUM (.77), UNK (.61), ALB (.54), and CUB (.51).

Although several variables shifted from TRADE to INDIP in the 1963 space as we have just discussed, the overall factor structure of both spaces were quite similar. As we can see in Table 10-2, the overall correlations between the 1955 and the 1963 factor loadings

¹¹⁹Later (in Chapter 9), this will be discussed in detail.

¹²⁰ The figures are standardized factor scores.

TABLE 10-2

B-SPACE FACTOR PATTERN STABILITY OVER TIME:

FACTOR COMPARISON BETWEEN 1955 AND 1963 SPACES

FACTORS	KINDS OF DATA				
	0	т	R	RT	
1 TRADE	.72 ^b	.68	.70	.67	
2 FDIPL	.95		.97	.95	
3 INDIP	.91	.97 .86 .69	.98 .96	.97	
4 ECAID	.97	.69	.96	.67	
5 NECOM	.98	.96	.98	.97	
6 CONGO	.85	.79	.80	.70	
7 VISIT	.77	.58	.83	.76	
OVERALL ^C CORRELATION	.91	.92	.90	.91	

O = Original Data (N = 81)

where L is transformation matrix for least-square fit. Correlation was calculated between two super columns, each of which was formed by connecting all columns one after another, in the \mathbf{F}_{63} and the $\hat{\mathbf{F}}_{63}$ matrices, respectively.

T = Transformed Data (N = 81)

R = Reduced Data Matrix (N = 55)

RT = Reduced and Transformed (N = 55)

^bCorrelation between corresponding factors in 1955 and 1963 spaces. Signs are ignored.

^CCorrelation between actual 1963 factor loadings (F_{63}) and the 1963 factor loadings estimated from 1955 factor loadings from the following equation,

were greater than .90 in all four sets of data. 171

It is difficult to compare the factors of H-space with those of similar studies. In this study, all dyads have the same actor--China, and this means that we are dealing with only one nation's behavior pattern, while other studies include many actors and deal with the general pattern of nations' behavior. As mentioned earlier (5.2), a one-actor-behavior-space creates many problems such as restrictions on the selection of variables. 127 If the list of variables are completely different for the two studies, it is very difficult to compare the factor patterns.

The dimensions of B-space in this study, however, may be meaningfully compared to the ones delineated in a one-actor dyadic study done on U.S. foreign behavior by Rummel (Rummel, 1970b). Though the actors are different, there are many aspects to be compared: both studies shared many variables, the year of the analyses was the same (1955), and the population of the studies was the same (the same eighty-two nations).

The factors were matched one by one through the common high loading variables as shown in Table 11-1. As we can see in the table, we can identify four similar factors in the two studies: Trade-Anglo-American cooperation, formal diplomacy-cold war, negative communication

¹²¹The correlations were calculated using Ahmavaara's transformation analysis technique. See Ahmavaara and Markkanen, 1958. See also footnote in the table.

¹²²The sphere of interaction of a single nation is usually very restricted. Many variables such as military conflict, anti-government demonstrations, tourist, expulsion of diplomats were excluded because of low variance.

TABLE 11-1

B-SPACE FACTORS:

COMPARISON WITH RUMMEL'S STUDY ON USA®

FACTORS	нто	GH-LOADING VARIABL	RUMMEL'S FACTORS	
of this study	LOADING	VARIABLE NAME	LOADING	NUMPIEL'S FACTORS
TRADE (Trade)	.97 .93	Exports Imports Exports of book	.93	Anglo-American Cooperation
FDIPL (Formal Diplomacy)	.90	Diplomat sent to Peking Embassy or Legation	.69	Cold War
CONGO (Co-Membership of NGO)	.89	NGO Co-membership		None
NECOM (Negative Communication)	.99	Negative Communication Military Violence	.90	Deterrence
INDIP (Informal Diplomacy)	.86	Non-Official Visit		None
ECAID (Economic Aid)	.96	Economic Aid	.91	Aid
VISIT (Official Political Visit)	.84	Official Political Visit		None
None		Students Conference	.84 -75	Western European Cooperation
None		Negative Sanction	n .81	Negative Sanction

aRummel, R. J. "U. S. Foreign Relations: Conflict, Cooperation and Attribute Distances," The Dimensionality of Nations Project, Research Report No. 41. Honolulu: University of Hawaii, 1970.

**deterrence, economic aid **aid. The most salient (in terms of variance accounted for) factor in Rummel's study--Western European Cooperation--, however, could not be matched with any in this study. This was because all the high loading variables on this factor were the ones omitted in this study.

From this comparison, we can find that a nation's cooperation behavior is independent of both formal diplomacy and conflict behavior, the implication of which will be discussed in detail later.

The factors of this study were also compared to those delineated from global studies.

As references, two of Rummel's works were chosen. The first one was "Field Theory and Indicators of International Behavior," in which Rummel tested field theory (both Model I and II) using 1955 data and a selected sample of 182 nation dyads. Since one of his aims with the work was to select indicators of such central concepts as cooperation, conflict, and transaction, he included all possible variables to cover every possible aspect of international relations between nations.

Therefore, the dimensions delineated in that study may be assumed to be sufficiently general as a reference. 123

Again, in terms of highly loaded variables, each of the seven factors in my study correspond to a factor in Rummel's study, as shown

¹²³Ten dimensions of nations' behavior were found in the study = salience, emigration and communication, UN voting, foreign students, export, international organizations, official conflict behavior, diplomatic representation, self-determination voting and anti-foreign demonstration. See Rummel, 1969b.

in Table 11-1. To figures are the fact r Landings of the variables on the dimension

An we can use to the taker, it was possible to match five out of the total never factors of this study to corresponding ones in Rummel's study. The other two secondaries and (ECAID) and official political visita (VIDIT). Sample not be matched, alongly because Rummel did not include the variables related to those concepts.

The account global study numbered to was "Field Theory and the 1963 Behavior Space of Nations" (Summel, 1970c). This study was done with fifty-six variables for 182 dynds generated from fourteen selected sample nations using 1963 data.

Out of the mixteen orthogonal factors found in Rummel's study, six could be identified with six of the seven factors found in this study, by checking common high loading variables. The results of the comparison are given in Table 11-3.

The high comparability of the factors in this study with those of global studies is significant, because it indicates that the foreign behavior of nations, though seemingly complicated, can be defined in terms of several common ingredients. The generality of the common basis of nations' behavior confirms axiom 3 of field theory and assures us of the applicability of field theory to one-actor dyadic study.

In subsequent analyses, the factor scores of the seven factors will be used as the measuring units of China's behavior toward (other mations on that dimension. The scores are given in Appendix III-B.

TABLE 11-2
B-SPACE FACTORS: COMPARISON WITH RUPMEL'S GLOBAL STUDY, 1955

FACTORS	ні	GH-LOADING VARIABLE	DUNATU IO DAGRADO	
OF THIS STUDY	LOADING VARIABLE NAME LOADING		RUMMEL'S FACTORS	
TRADE (Trade)	.97 .98	Exports Imports	•95 	Export
FDIPL (Formal	.90	Diplomat sent to Peking		Diplomatic
Diplomacy)	.90	Diplomat received by Peking		
		(Relative embassy legation)		
CONGO (Co-Membership of NGO)	.89 	NGO Relative IGO Relative NGO	.51 .86 .79	International Organization
NECOM	•99	Negative	.81	Deterrence
(Negative Communication)		Communication Military Violence	.81	
INDIP (Informal Diplomacy)	.86	Non-Official Political Visit		Communication
Diplomacy,		Relative Mail	.90	
	.65	Positive Communication		
ECAID (Economic Aid)	.96	Economic Aid		None
VISIT (Official Political Visit)	.84	Official Political Visit		None

R. J. Rummel. "Field Theory and Indicators of International Behavior." The Dimensionality of Nations Project, Research Report No. 29. Honolulu: University of Hawaii, 1969. The factor analysis was done for 182 dyads generated from fourteen selected nations.

TABLE 11-3
B-SPACE FACTORS: COMPARISON WITH RUMMEL'S GLOBAL STUDY, 1963

FACTORS	ні	GH-LOADING VARIABI	RUMMEL'S FACTORS	
OF THIS STUDY	LOADING VARIABLE NAME LOA			LOADING
TRADE (Trade)	.86 	Exports Books Tourists	.83 .87 .87	Salience
FDIPL (Formal Diplomacy)	.96 	Diplomat sent to Peking Relative Embassy	.90	Diplomatic
CONGO (Co-Membership of NGG)	.88	NGO Co-Membership Relative IGO	.88	International Organization
NECOM (Negative Communication)	•95 	Negative Communication Total Conflict	.86	Deterrence I
INDIP (Informal Diplomacy)	.79	Treaty		None
ECAID (Economic Aid)	."88 	Aid Relative Treaty	.93 .95	Aid
VISIT (Official Political Visit)	.86 	Visits Students	.73 .86	Students -

Rummel, R. J. "Field Theory and the 1963 Behavior Space of Nations." The Dimensionality of Nations Project, Research Report No. 44. Honolulu: University of Hawaii, 1970.

CHAPTER VIII

ASSESSMENT OF FIELD THEORY FOR CHINA'S BEHAVIOR

One of the basic propositions of field theory was that the sum of the attribute distance vectors works as a force to determine the dyadic behavior of the actor (see 3.2). In more rigorous terms, this says that there is a linear relationship between the basic dimensions of B-space and the attribute distances in A-space. And there were two different mathematical models—the Multiple Regression Model (MRM) and the Canonical Regression Model (CRM)—which represents the relationship between A- and B-spaces.

As discussed earlier in 4.1, the two models were tested with empirical data to determine fitness of the linear models to the data.

8.1 Test Result of the Multiple Regression Model

The equation of the "Multiple Regression Model" (MRM) was,

$$W_{mxq} = D_{mxp} P_{pxq} + U_{mxq}$$
 (10)

where W_{mxq} is the matrix of behavior space whose column vectors are the basis dimensions of B-space, D_{mxq} is the factor distance matrix

of the A-space, 124 P $_{\rm pxq}$ is the matrix of the regression coefficient and $\rm U_{mxq}$ is the residual matrix.

124There have been several different interpretations of field theory concerning the "kind" of distances to be employed. For example, some have used Euclidean distances, where distance between nation i to j on l-th attribute is calculated as

$$d_{i+j,\ell} = \pm \sqrt{(b_i - a_\ell)^2}$$

where $d_{i\to j,\ell}$ is the distance on ℓ -th variable, a_ℓ and b_ℓ are scores of i and j on variable ℓ . Note that here we lost the "direction" of difference, since there are two square roots for one value (+ and -) and we do not know which to take. If there are more than two variables $(e.g.~\ell, k)$ then the distance between i and j will be

$$d_{i+j} = \pm \sqrt{(b_{\ell} - a_{\ell})^2 + (b_{k} - a_{k})^2 \dots}$$

but in the original model of field theory, Rummel specified how to aggregate individual distances into one, stating that the aggregation should produce "the resolution" vector. Therefore, we cannot calculate the distances in this way.

Gleditsch (1969, pp. 12-3) once discussed four "permissible" interpretations of the distances. The four are 1) signed differences on attribute dimensions, 2) squared differences on attribute dimensions, 3) sums on attribute dimensions, and 4) squared sums on attribute dimensions. Among these, however, No. 3 and No. 4 are obviously not "distances" and should be excluded. The "squared differences" (No. 2) is also not desirable for the following two reasons: First, "squared distances" do not fit the original meaning of "distance," since it cannot discriminate the position of i from the position of j in the field. The "distance" is a quantity that defines the position of point i relative to other points in the field. It is the relative position which is defined by both direction and magnitude, not only the magnitude of the distances, that works as force. Second, there is no reason for substituting "squared differences" for "signed differences." The original argument for this substitution was basically grounded on the fact that with signed differences the behavior i+j should be the exact reverse of j+i which is unrealistic in the empirical world. But if we take Model II rather than Model I, this argument becomes pointless, since different weighting parameters for each nation actor will "adjust" this absurdity. As a conclusion, there is no alternative interpretation of the distances "permissible" within the context of field theory. I will retain the original interpretation of d as a distance vector and of D as comprising distance vectors.

First, each of the seven columns of W matrix was re, ressed on the fourteen columns of D to get the P matrix. Then, I calculated the predicted value of each case (dyad) on the same seven factors using the following equation

$$\hat{\mathbf{W}} = \mathbf{DP}$$
 (24)

where \hat{W} is the calculated value for W. Residuals, U were obtained by subtracting \hat{W} from W ($U = W - \hat{W}$). In order to see the overall linear fit between the two spaces, I calculated the product-moment correlation between W and \hat{W} . In order to see the sensitivity of the findings to the kind of data, the same analysis was done for all four parallel sets of data (0, T, R, and RT). Since the \hat{W} and U matrices are too big to be printed, only the product-moment correlations between W and \hat{W} appear in Table 12.

As we see in the table all the correlations were converged around .70, which means that about 50 percent of the variance is contained in the linear fit. Whether to accept this figure as satisfactory is a difficult decision because there is no objective standard. Considering possible error in the data collection and the arbitrariness in selecting variables, however, the fifty percent figure is relatively high and can serve as strong supporting evidence for the proposed linear relationship between attribute distances and behavior of nations.

TABLE 12

TEST RESULT OF MULTIPLE REGRESSION MODEL:

CORRELATION BETWEEN PREDICTED AND OBSERVED BEHAVIOR

TYPE ^a OF DATA	19	55	1963			
	r ^b	r ²	r	r ²		
0	.713	.508	.704	.496		
T	.689	.463	.631	.39 8		
R	.728	.527	.725	.526		
R T	.705	.497	.665	.442		

a₀ = Original data (81 dyads)

T = Transformed data (squareroot transformation) (81 dyads)

R = Reduced data (55 dyads)

RT = Reduced and Transformed data (55 dyads)

bCorrelations were calculated between the predicted scores, W (= DP), and the observed scores, W. A super column was formed from each matrix into one long column, and, then, a product-moment correlation between the two super columns was calculated.

8.2 Test Results of the Canonical Regression Model

As discussed in 4.1.1, and 3.4.3, my major concern is the CRM. The mathematical model of the CRM was,

$$W_{mxq} Q_{qxq} = D_{mxp} P_{pxq} + U_{mxq}$$
 (18)

where W_{mxq} is the matrix of seven column vectors of the basis dimensions of B-space, Q_{qxq} is the matrix of canonical regression weights of the columns of the W_{mxq} matrix (China's behavioral framework), D_{mxp} is the matrix of the factor score distance vectors of the fourteen basis dimensions of A-space, P_{pxq} is the matrix of canonical regression coefficients which weight each of the columns of A-space matrix (China's perceptual framework), and U_{mxq} is the residual matrix (WQ - DP).

Again, canonical regression analyses were done on all the four data sets; the results are presented in Table 13. In order to measure the overall fit between A- and B-space, the trace correlations (the average of seven canonical correlations) were calculated. Table 14 shows the trace correlations for the four data sets for both 1955 and 1963.

As shown by the r² in Table 14, the result indicates that approximately 55 percent of the total variance in the spaces was accounted for by the model. Although the figures are not quite satisfactory, they still support linear relationship between A- and B-spaces

TABLE 13

TEST RESULTS OF CANONICAL REGRESSION MODEL^a (1)

(1) 1955 DATA

KIND OF	O ^C R D E R	PROPORTION OF TOTAL VARIANCE	r ^e	λ ^f	x ² ^g	d.f.h	z ⁱ d.f.>30	σ [,] 3
0	1 2 3 4 5 6 7	9.5 9.5 10.1 10.1 9.0 9.1 9.5	.991 .954 .869 .729 .580 .441	.000 .005 .053 .216 .460 .693	659.4 374.7 205.9 107.4 54.4 25.7	98 78 60 44 30 18 8	22.3 14.9 9.4 5.3 2.7 1.3 0.7	0.13 0.30 0.51 0.73 0.91 1.05
т	1 2 3 4 5 6 7	9.5 9.8 10.2 9.4 9.6 8.8 9.3	.960 .923 .855 .715 .548 .373	.001 .010 .074 .274 .560 .800	493.8 316.2 182.7 90.7 40.6 15.6 5.1	98 78 60 44 30 18	17.5 12.7 8.2 4.1 1.3 -0.3	0.28 0.39 0.53 0.75 0.94 1.11 1.20
R	1 2 3 4 5 6 7	9.5 9.5 10.2 10.1 8.5 9.4 9.5	.988 .968 .899 .792 .541 .455	.000 .002 .034 .178 .478 .675	435.7 270.2 148.6 75.9 32.5 17.3 7.1	98 78 60 44 30 18	15.6 10.8 6.3 3.0 0.4 -0.0	0.15 0.25 0.45 0.64 0.95 1.03
RT	1 2 3 4 5 6 7	9.2 10.0 10.3 9.4 9.5 8.8 9.5	.966 .945 .893 .741 .489 .390	.000 .006 .053 .261 .579 .760 .897	346.7 227.5 129.3 59.1 24.1 12.0 4.8	98 78 60 44 30 18	12.4 8.9 5.2 1.5 -0.7 -1.0 -0.8	0.26 0.33 0.46 0.71 1.00 1.09 1.15

(CONTINUED)

TABLE 13 (Continued)

TEST RESULTS OF CANONICAL REGRESSION MODEL (2)

(2) 1963 DATA

KIND OF DATA ^b	ORDER	PROPORTION OF TOTAL VARIANCE	r ^e	λ ^f	x ²⁸	d.f. ^h	z ⁱ d.f.≥30	σĴ
0	1234567	9.4 9.6 9.5 9.3 9.9 9.6 9.7	.968 .921 .858 .845 .445 .396	.000 .007 .049 .186 .648 .808	535.8 343.0 211.4 117.9 30.3 14.9	98 78 60 44 30 18	18.8 13.7 9.7 6.0 0.1 -0.5 -1.4	0.25 0.40 0.53 0.55 1.05 1.09 1.25
т	1 2 3 4 5 6 7	9.5 9.6 9.3 8.9 9.6 9.6 9.6	.961 .882 .798 .592 .470 .376	.003 .032 .146 .403 .620 .796	419.2 240.1 134.6 63.7 33.4 15.9	98 78 60 44 30 18	15.0 9.5 5.5 2.0 0.5 -0.3 -0.6	0.28 0.48 0.63 0.90 1.02 1.11 1.20
R	1 2 3 4 5 6 7	9.4 9.6 9.2 9.6 9.5 9.4 9.1	.965 .936 .904 .825 .514 .469	.000 .004 .031 .171 .536 .729	362.2 244.5 152.5 77.7 27.5 13.9 3.0	98 78 60 44 30 18	13.0 9.7 6.6 3.1 -0.3 -0.6 -1.4	0.26 0.35 0.43 0.59 0.98 1.02 1.21
RT	1 2 3 4 5 6 7	9.6 9.5 9.6 8.6 9.6 9.4 9.8	.961 .929 .837 .609 .472 .436	.001 .014 .103 .345 .549 .707 .873	301.1 187.5 99.9 46.8 26.4 15.3 6.0	98 78 60 44 30 18	10.6 6.9 3.2 0.3 -0.4 -0.4	0.28 0.37 0.57 0.88 1.02 1.05

(CONTINUED)

TABLE 13

(Continued)

TEST RESULTS OF CANONICAL REGRESSION MODEL (3)

(3) FOOTNOTES

For detailed explanation of each statistic given, see Rummel, 1970b, pp. 89-90, Appendix IV, and Van Atta and Rummel, 1970, p. 23.

bThe symbols represent the following:

0 = Original data (N = 81)

T = Transformed data (N = 81)

R = Reduced data (N = 55)

RT = Reduced and transformed data (N = 55)

 $^{\rm c}$ Order of canonical variate pairs, e.g. 1: first canonical variates, 2: second canonical variates, and so on.

deach of the pairs of the canonical variates.

er = canonical correlations, the correlation between A- and B-spaces.

fine formula for λ is

$$\lambda = \frac{q}{\pi} (1-r_k^2)$$

where q is the number of canonical correlations, $\mathbf{r}_{\mathbf{k}}$ is the k-th correlation.

Schi-square equals -{n-0.5(p+q+1)}log_A

where $n = the number of cases (dyads), q = the number of behavioral dimensions (<math>\neq 7$), and p = the number of attribute dimensions (distances; <math>= 14).

hd.f. = degrees of freedom

d.f. =
$${p-(k-1)}{q-(k-1)}$$

¹Corresponding areas under the normal curve.

Standard deviation (error) of residuals in equation 18. The residual, U = WQ - DP.

TABLE 14 TRACE CORRELATIONS OF CANONICAL ANALYSES 1955 AND 1963

KINDS OF a	199	55	1963		
DATA	r	r ²	r	r 2	
0	.74	.55	.72	.52	
т	.71	.50	.67	.45	
R	.76	.58	.74	.55	
RT	.72	.52	.70	.49	

a_O = Original Data (N = 81) T = Transformed Data (N = 81) R = Reduced Data Matrix (N = 55) RT = Reduced and Transformed (N = 55)

in field theory. 125 Some possible reasons for the 45 percent unpredicted variance are: 1) too many "zero" cells in the behavior data matrix, 2) the limited number of variables, and 3) incorrect information. Comparing the trace correlations of the original data (0) to those of the reduced data set (R), we can see a slight increase (3%) in the latter. This seems to indicate that 1) holds. There is no evidence at this moment, however, for 2) and 3). Only after the analysis is redone with more variables and better data, can the results be compared.

 $^{^{125}}$ The findings here are almost comparable to the findings of Rummel's two previous studies: For the China study (Rummel, 1969b), the trace was .77, the first canonical correlation was .97 and the second canonical correlation was .85; for the U.S. study (Rummel, 1970b), the trace r=.68, lst r=.94, 2nd r=.82. But the findings of this study are much better than the ones in the 1963 China study (Van Atta and Rummel, 1970): the trace r=.68 of Van Atta and Rummel's was .61, the first canonical r=.94 and the second canonical r=.82.

CHAPTER IX

PATTERNS OF CHINA'S FOREIGN BEHAVIOR

In Chapter VIII, the empirical test of field theory was discussed. The results confirmed the linear relations between behavior space and attribute distance space proposed by field theory and showed sufficient evidence for the applicability of the model for some restricted purposes \$\frac{1}{2}6\$ such as the delineation of the inner structure of the behavior-attribute distance linkage patterns. In this chapter, I will discuss the patterns of China's foreign behavior delineated by the canonical analysis (CRM).

¹²⁶The results were not completely satisfactory in the sense that the model, in its current form and tested with obtainable data, is not accurate enough to be used by policy makers to forecast real behavior. There is no general standard for determining the practical applicability of a behavior model. Different purposes may require different degrees of accuracy of prediction of the model. As we have seen in the previous chapter, the model, in general, accounts for more than fifty percent of the variance in behavior space. For example, in determining what attribute distances are important in explaining China's negative communication toward the object nations, the model which accounts for more than half of the total variance of negative communication behavior is acceptable.

But if the practitioner wants to use the model to estimate the amount of China's trade with a certain object nation, greater accuracy is required. Thus, I concluded that the model is inadequate for practical prediction. For practical forecasting, the standard deviation of error (real value minus estimated value) must be less than twenty percent of that of original variables. The detailed results of forecasting with the model will be discussed in Chapter X.

The canonical regression delineated seven patterns of China's foreign behavior. As discussed in 4.4, canonical analysis provides structure equations that relate a set of behavior variables (here, the basis dimensions of B-space) to a set of attribute distances (the basis dimensions A-space) in the form of linear combinations where the weighting coefficients are the partial correlations of the variables with the canonical variate scores. 127

Since the coefficients (loadings), when squared, tell us the contributions of individual dimensional variables in constituting canonical variates, we can see the pattern structure of China's foreign behavior, i.e., which distances are related to which behavior.

The form of the structure equation looks like the following:

$$b_{1h}W^{1} + b_{2h}W^{2} + \dots + b_{kh}W^{k} + \dots b_{qh}W^{q} + a_{1g}D^{1} + a_{2g}D^{2} + \dots + a_{kg}D^{k} + a_{pg}D^{p}$$
 (20)

where b_{kh} is the loading of the k-th factor of W (W^k) on the h-th canonical variate of B-space and a_{kg} is the loading of the L-th factor of D (D^L) on the g-th canonical variate of A-space. The arrow means "relatedness" between the two combinations. 128

¹²⁷Since the factors are almost orthogonal to each other in both A- and B-spaces and the scores are standardized, canonical regression coefficients are almost the same as the loadings.

¹²⁸ For a more detailed explanation of the canonical structure equation, see 4.4.

Out of the seven behavioral patterns of China found in the canonical regression analysis, the first five had canonical correlations which were statistically significant at the .01 level. 129 The sixth pattern had a correlation significant at the .10 and the seventh, at the .25 level. But the corresponding 1963 analysis gave only four patterns whose canonical correlations were significant at the .05 level.

In this chapter, the first four behavioral patterns which had significant correlations at the .05 level in both years will be interpreted in the first three sections. The four to be discussed are power-interaction (the first equation), the cold war (the second equation), the formal diplomacy (the third equation) and the behavior pattern related to international organizations (the fourth equation).

of the three remaining patterns, the first two--informal diplomacy (the fifth equation) and economic penetration behavior (the sixth equation)--will also be discussed in the latter two sections. Not only were they significant in the 1955 analysis (though non-significant in 1963), they also repeatedly appeared in the studies with all other modified data sets. Therefore, they are also to be meaningfully discussed, in the sense that the patterns, at least, will give us some general feeling about China's behavioral patterns.

 $^{^{129}}$ The Z value of the fifth canonical correlation with 30 degrees of freedom was 2.7, and corresponding P (Z > 2.457) = 0.01. For other Z values, see Table 13.

9.1 Power Interaction Pattern of China

The first behavioral pattern of China found in the canonical regression analysis mainly comprised two behavioral basis factors: negative communication and trade activities. The form of the relations between the two behavioral factors in the pattern was "additive": the two factors had the same positive signs.

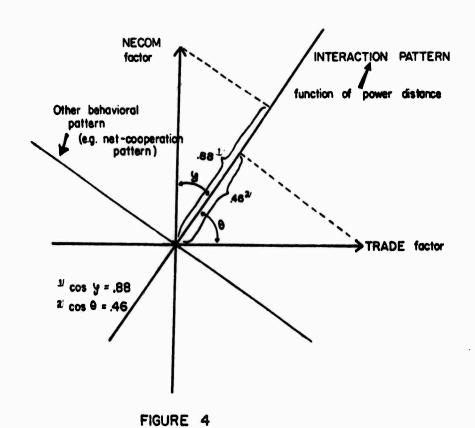
The pattern in the form of the structure equation 130 delineated with the 1955 original data was

88 NECOM + 46 TRADE + 97 POWER
$$(r = .99)^{131}$$
 (25)

This equation shows us that approximately seventy-seven percent of the variance in negative communication behavior (NECOM) and eleven percent in trade activities (TRADE) are explained mainly by one attribute distance--power disparity. The equation tells us that the amount of "joint" behavior of China's negative communication and trade directed to an object nation is a function of the power distance of the

¹³⁰The signs of the coefficients are "adjusted" to make the interpretation easier. The signs of factor scores have only a "relative" meaning within the factor, i.e., the figure with the negative sign (-) is on one side of the zero point on the continuum. The signs, therefore, are not "absolute." The scores of the same factor may reverse signs from one analysis to another, for example, if the number of the factors to be rotated changes, or if a different algorithm (MESA or MODULAR) is applied. Depending upon the signs of the original factor scores, the signs in the canonical structure equation change. In this study, the signs are "adjusted" to be meaningful.

¹³¹The figure in the parentheses is the canonical correlation for the equation when all variables (including the one omitted due to low loadings) are included in the equation.


nation from China. Verbally, this means that the more powerful¹³² the object nation, the more hostile China's communication, with more trade¹³³ between the two nations.

It is worthwhile to note that by the "joint" behavior of NFCOM and TRADE, I do not imply that the two behavior scores vary together (covary). The two factors are mutually independent, and the correlation between them is almost zero. The positive parameters of the behavior vectors in the above equation tell us that the pattern comprises the two behaviors together in a positive way. The relation of the behavioral pattern and its component vectors can be geometrically illustrated as in Figure 4.

As we discussed in Chapter III, the canonical regression model of field theory delineates sets of mutually independent behavioral patterns, each of which is expressed in the form of a linear combination of the B-space basis dimensions. The above pattern, expressed as a linear combination of NECOM and TRADE is one of those found in the canonical regression analysis.

¹³²The independent variables are in terms of "difference" in factor scores. By difference we mean the score of the object minus China's score (signs retained) and not the "absolute" distance (see footnote 124). In 1955, China's score on POWER dimension was close to the mean value (in 1963, it was one standard deviation above the mean). Therefore, the POWER scores in this equation may be loosely interpreted as if they were "absolute" scores on the power scale. China's rank, however, is far above the center, since the mean value, itself, shifted to "powerful" direction because of several extreme cases such as USA (7.4 standard deviation high) and USR (4.2 standard deviation high).

¹³³As indicated by the low coefficient of TRADE (.46) in the equation, its contribution to the canonical variate score is small (21%). As will be discussed later (see 9.2) trade behavior is mainly explained by political orientation, rather than power disparity.

RELATIONSHIP BETWEEN BEHAVIOR PATTERN AND ITS COMPONENT BEHAVIOR VECTORS

The pattern is composed of both conflict behavior (NECOM) and cooperation (TRADE) together and is mostly explained by the power disparity between China and the object nation. This pattern, therefore, depicts only the intensity of interaction disregarding whether the behavior is conflictful or cooperative. Since the explaining variable is power distance, and the pattern was neutral to the quality of the behavior, the pattern is named "power interaction pattern." The canonical correlation for this structure equation is .99. This means that nearly all of the joint behavior of China's negative communication and trade (NECOM + TRADE) can be explained by power disparity (to the amount of 99 percent of the variance). Applying this equation, we can calculate a set of estimates of behavior scores for the combination of NECOM and TRADE, the interaction pattern scores (intensity of interaction) for each object nation from power disparity. Figure 5 plots the estimates of this behavior combination from power disparity. In the plot, as expected from the high canonical correlation (.99), the dyads are aligned fairly close to the 45 degree line (perfect prediction line). From the plot we can see that such a high correlation as .99 was due mainly to two extreme dyads, CHN+USA and CHN+USR. Even after eliminating the two dyads, however, the plots still show a satisfactory alignment.

In order to see the direct relationship between POWER and NECOM (without TRADE contamination) the factor scores of NECOM was directly plotted against POWER in Figure 6. Comparing Figure 5 to Figure 6, we can see clearly that the high value of USA on the Y axis in Figure 5 was mainly due to the high NECOM score, while that of USR was the

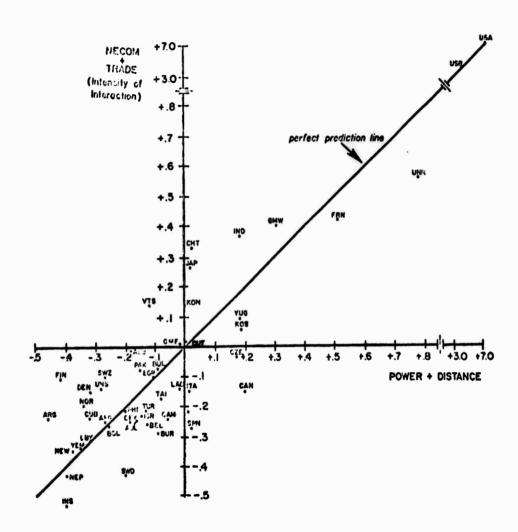


FIGURE 5
CHINA'S JOINT BEHAVIOR OF NECOM + TRADE, 1955
(canonical variate scores)

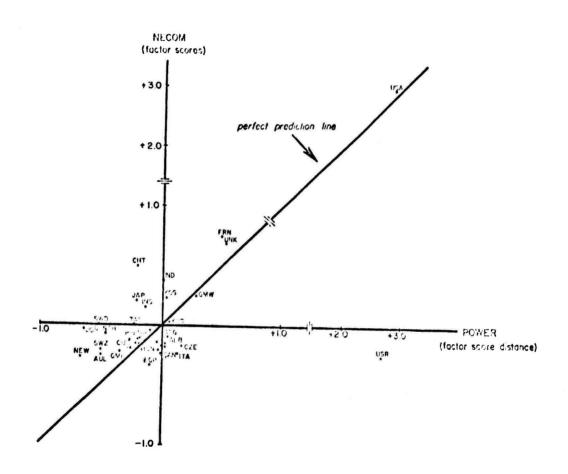


FIGURE 6
CHINA'S NECOM VS. POWER DISTANCE, 1955
(factor scores)

effect of high trade. In Figure 6, the dyads also roughly aligned along the perfect prediction line. This shows us that the pattern delineated shows the functional relationship between China's verbal hostility and the power of the object nation.

To see the effect of the modification of the data on the delineated behavioral pattern, the corresponding structure equations resulted from all four data sets—original (0), transformed (T), reduced (R) and reduced and transformed (RT)—are presented in Table 15. Comparing the four equations, we can see some significant changes in the loadings from one equation to another, although the basic pattern relationships are similar.

The difference between the loadings of the original data and the transformed data especially was noticeable. The variate scores of each output indicated that the changes were mainly due to the extreme values of USA and USR on NECOM and POWER. By reducing these values so that they are closer to the main group of objects by transformations, the effect of "big variance" on NECOM and POWER were "tamed." The contribution of TRADE, then, was increased relatively and the hidden contribution of political orientation (PORIE) in A-space emerged. For example, the same canonical relation of POWER-NECOM linkage in T-55 study came out as the following:

$$58 \text{ NECOM} + 75 \text{ TRADE} + 80 \text{ POWER} - 43 \text{ PORIE} \quad (r = .96)$$
 (26)

Comparing this equation (26) to the previous one (25), we need to change the verbal interpretation slightly: the more powerful the object nation is and the more it is oriented politically toward the

TABLE 15

CANONICAL STRUCTURE EQUATIONS

FOR CHINA'S INTERACTION BEHAVIOR (NECCH + TRADE)

	U _L	65.	95-	-66.	.95	.97	% .	16.	.96
	D M ≼ H A							33	
	6.00 × 6.								
	20402								
	O F & 4 D								
	A O N H 4								
SES	36 M 17 Cc ≪								
ATTRIBUTE DISTANCES	OH>ME								
IBUTE	0 E H N E								
ATTR	∢ ∪≈∺∪								
	DHFMC				35				
	3 M W H C								
	UMPMI						97-		74-
	40EHM		£4		-47				
	403ME	76	8	8	-79	8	2	8	۲
	> H W H H								
	00200						9		-56
OR FACTORS	RNUOR	88	2	*	8	8	-55	18	-25
	MUKHA								
BEHAV	надна								
	PUPPE				3				
	P K < Q M	79	2	Ş		19	63	*	-59
		P0	Н	«	E	٥	H	125	£
L	# 4 O H O E N		× 10 ·	^		н	76.	1	

For computation, Charles Wall's CANONICAL program was used.

base are factor label codes.

Communical correlations. All correlations are significant at the .0005 level.

do = Original data (81 dyads), T = Transformed data (81 dyads), R = Reduced data (55 dyads), R = Reduced and Transformed data (55 dyads).

"Only loadings that exceed .30 are given in the table. Signs are as appeared in the original computer outputs. Decisal points are removed.

non-Communist bloc, the more China tends to trade with the object and to direct more negative communication to the object.

The pattern was stable across time. The corresponding structure equation in the 1963 analysis was

$$68 \text{ NECOM} + 64 \text{ TRADE} + 80 \text{ POWER} \quad (r = .97)$$
 (27)

Comparing the equation with the one for 1955 (equation 25), the pattern was the same, although the loadings were slightly changed and the canonical correlation dropped from .99 to .97. Considering the crudeness in the current data collecting procedure, the pattern is sufficiently stable across time. In Figure 7, the value of the behavioral variate of equation 27 was plotted against the value of the distance variate score for all dyads. Again as can be seen in the figure, the dyads aligned fairly well along the 45 degree line.

The finding of the strong linkage between NECOM and POWER exactly coincided with the findings of Rummel's previous work (Rummel, 1969b). Rummel's corresponding finding with 1955 data was, in terms of the structural equation,

100 Conflict + -75 National Income
$$(r = .97)$$
 (28-a)

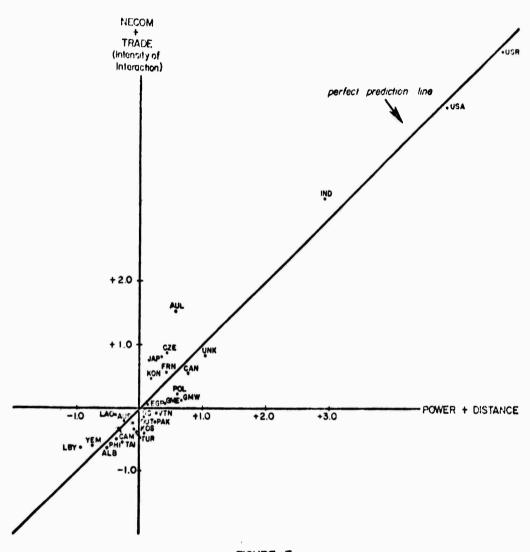


FIGURE 7
CHINA'S JOINT BEHAVIOR OF NECOM + TRADE, 1963
(canonical variate scores)

where the power disparity was measured in terms of distance in national income and the conflict may be regarded as the equivalent of NECOM of this study. 134

Another similar finding was reported by Rummel in his recent study on U.S. foreign relations (Rummel, 1970b, pp. 54-5). The finding in the form of the structure equation was

$$81 \text{ WE} + 66 \text{ DE} + - 81 \text{ PO} \quad (r = .94)$$
 (28-b)

where WE means Western European behavior (cooperative), DE stands for the deterrence pattern (conflict), and PO is the power distance vector. Although the term TRADE in equation 25 of this study is somewhat different from WE of 28-b, one thing is very similar between the two findings: both are "conflict + cooperation + power" type patterns.

It is also meaningful to compare the findings to some of the existing relevant theories. First, let us compare our results with

while in this study the distance was calculated as

¹³⁴Note that "National Income" in the equation has a minus sign, while in equations 25-27 "POWER" has a plus sign. Although the results look different, in fact, the relations are similar, because in Rummel's study, the distance between the actor (U.S.) and the object was calculated as

aChina - aobject,

aobject - aChina .

The findings were similar for the 1963 data (Van Atta and Rummel, 1970). But this time instead of power distance (-.53), difference in political orientation (.84) appeared as the leading explanatory attribute distance. This result is similar to equation 26 above.

some of the propositions of the status theory. 135 Rummel combined two separate propositions 136 of Galtung's status theory as follows: "the distance of the object nation from U.S. (the actor) on power will contribute negatively to the joint cooperative and conflictual actions of the U.S. (the actor) toward that nation." In the form of the structure equation, this proposition was expressed as

$$gCO + hCF = -PB + k$$
 (29)

where CO denoted the cooperative acts of the U.S. (the actor) toward an object nation, CF conflict, and PB distance on power bases. In other words, this equation says that "the joint amount of conflict and cooperative actions toward an object should depend on the power parity of the two nations" (Rummel, 1970b).

Considering that the U.S. is the most powerful nation, and that, therefore, distance from the U.S. on power bases means less power, we can interpret the statement for China as the following: "the more

¹³⁵Lagos, 1963; Galtung, 1966. For the propositions of status theory, see Rummel, 1970b, pp. 27-35.

¹³⁶One was for cooperative behavior, and the other for conflict behavior. They were, in Rummel's modified expression, 1) "the distance of object nation from the actor on economic development and power bases dimensions of attribute space will contribute negatively to the relative cooperative actions of the actor toward that nation," and 2) "the distance of the object nation from the actor on economic development will contribute positively and the distance on power bases will contribute negatively to the relative conflict actions of the actor toward that nation." (Rummel, 1970b, pp. 32-33. "U.S." was replaced with "the actor" by me).

powerful the object nation is, the greater the joint amount of conflict and cooperative actions toward the object nation becomes." If we compare this statement with the findings in this study, 137 we can see that the two statements are the same. We, therefore, can conclude that the findings of this study strongly support this part of status theory.

At this point, however, we need to note that the confirmation is for the proposition of status theory which was reconstructed by Rummel and not the original propositions. For example, the propositions of cooperative behavior alone says that "equal status (power parity--for U.S. this means other Powers, while for China it means other middle powers) leads to high cooperation," which was obviously not the case for China.

This inconsistency comes from the fact that the meaning of parity of power differs from actor to actor depending upon the location of that actor on the power hierarchy: If the actor is the most powerful, the parity means "equally powerful"; if the actor is at the bottom of the hierarchy, then the same parity means "equally weak"; and if the actor is in the middle, it means "moderately powerful," and therefore, the disparity means both "more powerful" and "less powerful" simultaneously. In status theory, if we interpret the term disparity generally (as the third occasion in the above illustration), then, the proposition on conflict based on power parity was clearly derogated by the findings of this study.

¹³⁷ If we can assume that the TRADE scores in this study measure the cooperative behavior of one nation toward the object nation.

For China's case, for example, it status theory is correct, then, the dyads must align along the V shape prediction line consisting of two 45 degree lines meeting at the origin of the axes, because disparity means both "more powerful" and "less powerful." As we can see in Figure 4, the dyads lay along a straight line, and did not support the notion. The finding supported only half of the proposition: "the power disparity on the positive side causes conflict." On the negative side of the power dimension, the result was the opposite: "The weaker the object nation is, the less NECOM and TRADE."

Currently, however, one important theorem is being developed by Rummel on this linkage of power distance and conflict. In his statusfield theory 138 Rummel theorizes that the status dependent cooperation (CO) and conflict (CF) behavior of one nation toward another is a function of both the difference in economic development (d_1) and power distances (d_2), which is expressed in the following equation:

$$co + cF = (\alpha_1^{\#} - \alpha_1)d_1 - (\alpha_2^{\#} + \alpha_2)d_2$$
 (29)

Where α_1^* and α_2^* are cooperative parameters, and α_1 and α_2 , conflict parameters.

¹³⁸ Expressed in an unpublished draft printed in 1971. As I mentioned earlier, field theory is an abstract theory from which no specific theorem on real world political phenomena is deducible. In status-field theory, Rummel intends to subsume most of the major theorems of various status theories within the basic framework of field theory. This theory is still in the developing stage and the author has specified that no part of the draft paper be quoted without permission (Rummel, 1971).

Then, Rummel argues that 1) for economically developed nations, $(\alpha_1^* - \alpha_1)$ should be near zero while $(\alpha_2 + \alpha_2^*)$ is near unity; and 2) for economically underdeveloped nations, both α_2 and α_2^* are small (therefore, $\alpha_2 + \alpha_2^*$ becomes near zero) and α_1^* is high positive and α_1 is high negative (therefore, $\alpha_1^* - \alpha_1$ turns out to be a large positive figure). This means that for the economically developed nations, the joint behavior of cooperation and conflict is to be explained mostly by power parity, while for economically underdeveloped nations, the same behavior is explained mostly by their difference in economic development.

With this new theoretical perspective, let us examine the findings of this study again.

China was a moderately developed nation. Her rank on the economic development dimension was slightly above the midpoint in both years. Therefore, in explaining China's joint behavior of cooperation and conflict (intensity of interaction), both the difference in economic development and power parity are expected to play roles. China, however, was a high power nation (on power dimension, her rank was ninth in 1955 and third in 1963). Thus, for China, the total sum of d₂ (power distance) for all nations should be larger than that of d₁ (difference in economic development) in equation 29. Therefore, the empirical pattern is to give more weight on power distance than on the difference in economic development. The finding of this study (equations 25-27) empirically confirms this logical deduction by showing high weights on power distance. Furthermore, with this new theoretical framework of status-field theory with its dual explanatory distances

(power and economic development), we can solve the inconsistency problem of the original status theory discussed above: power parity explains conflict only among the high powers. As mentioned above, China was a high power nation. Thus, China's intensity of interaction (CO + CF) toward other economically developed powers should be very intense, because for those powers, d_2 are very small and d_1 is moderately large with large α_1^* and small α_1 . As we can see in Figures 5 and 7, the findings of this study strongly support this argument. China's trade activities and negative communication toward USR, USA, UNK, CAN, and FRN were very intense.

Following the same logic, from equation 29, we can expect China's interaction with the non-power nations which are also underdeveloped to be very low, because, d_2 will be large and d_1 is also moderately large, and together with d_1 effect (with negative correlation) and d_2 effect (with negative correlation), the total interaction score should be high negative (very low).

With nations which are highly developed and not powerful, such as AUL, CZE and JAP, Chinese interaction should be moderately more intense than estimated from the equations 25-27, because this time the effect of d₁ is relatively strong and, therefore, the scores should be greater than the ones estimated from power distance alone. This expectation was met by the findings in Figure 7: the dyads involving AUL, CZE and JAP have positions fairly above the 45 degree line.

As a whole, the cooperation-conflict theorem of status-field theory explains well why power parity well explains the intensity of

interaction for the dyads including high power object nations, but not for those including weak underdeveloped nations.

Although the status-field theory is based on status theory, the derived theorem on the linkage between conflict and power parity also subsumes the theorem of the power transition theory of Organski. 139 In the power transition theory, conflict is said to be very likely when a challenging new power (next to the dominant power) is approaching the old-guard power in power capability.

From the status-field theory view, this means that d_2 in equation 29 is very small (great power parity) and d_1 is large (the challenger is less developed and tries to pull her up to the level of the dominant power by gaining power). Thus, with large α_1^* and small α_1 , the interaction should be intense, and as indicated by large α_1^* , the interaction is very conflictful. The finding, as I discussed above, was very supportive of this notion of conflict of the power transition theory: as seen in Figure 5 and 7, China-USA dyad, for example, shows intense interaction, while, in Figure 6, it was revealed that the interaction mainly consisted of conflict.

One more finding still needs some explanation: why both cooperation and conflict behavior together vary in the same direction instead of being inversely correlated? Apparently, cooperation and conflict seem to form a continuum, cooperation on one end and conflict on the other. But it was found in many empirical studies that these two

¹³⁹ Organski (1968, p. 376): "...Thus, wars are most likely when there is an approaching balance of power between the dominant nation and a major challenger."

behaviors are mutually independent and do not form a continuum, or the two behaviors are not antipodes (Rummel, 1970b, p. 49). It has been further argued by Rummel that both of them are not behavior space dimensions, but both of them together load on one dimension which may be called cooperation-conflict dimension, or interaction dimension (See Figure 4).

The findings of this study (equations 25-27) strongly support the independence of cooperative and conflictful behavior. In all equations in this section, both NECOM and TRADE have high positive parameters, which means that they are not antipodes at all. The findings rather tell us that both NECOM and TRADE jointly form a pattern of behavior and are related to the power distances.

So far we have discussed China's interaction behavior pattern which comprises both negative communication and trade activities positively. To summarize: 1) China's negative communication behavior can be explained by the distance on the power dimension of the object nation from China; 2) If the power disparity is positive (more powerful than China), the negative communication value is proportional to the power distance, and if the power disparity is negative (weaker than China), then, the negative communication value is inversely proportional to the power distance; 3) trade (economic cooperation) is also largely explained by the power disparity and the degree of cooperation is proportional to the power capability of the object nations; and 4) conflict and cooperative behavior are not on the opposite ends of one continuum; they together form an interaction pattern.

9.2 Cold War Behavioral Pattern of China

The second behavioral pattern delineated by the canonical regression analysis with 1955 original data in a canonical structure form was

which meant that China tended to trade more, to have more intense formal diplomatic relations and to have less hostile relations with the socialist camp which received aid from the Soviet Union.

The pattern was very salient in terms of variance tapped by the model: ninety percent of the total variance of the behavior (r = .95) was contained in the model.

The pattern, as the interaction pattern discussed in the previous section, also comprises both cooperative behavior (TRADE and FDIPL) and conflict behavior (NECOM) together. This time, however, the relations between the two kinds of behavioral factors within the pattern is "subtractive" (in interaction pattern, they were additive). This means that the overall pattern score is determined by the difference between the cooperation score and the conflict score. The pattern score here is what was called "net cooperation index" by Park (Park, 1969).

Considering that the behavior depicted by the pattern is net cooperation between China and the object, and that the pattern is mostly explained by the difference in political orientation of the object nation from China, the pattern is named "cold war behavioral"

pattern." By "cold war" I do not necessary mean only the ideological war between the socialist camp led by the soviet Union and the Western World. I use the term more brown that it also includes China's ideological struggle for indisputation begemony in world politics, challenging both Western and beauty dominance.

With this in mind, let us examine the development of the pattern over time. The corresponding cold war matern, i.e., cooperation

(TRADE) - conflict (NECOM) pattern, took the following structure equation form with the original 1963 data.

This time, on the right hand side of the equation, CTRAD (trade with communist countries) replaced PORIE (pour riar orientation) with a reversed sign as the main explanatory factor and USAID (US aid received) appeared as a new supporting factor. The quation tells us that China, in 1963, tended to trade more with the nations which traded less with communist countries and which were under USA influence. The replacement of CTRAD with PORIE in the 1963 equation as a major explanatory variable clearly indicates the change in the nature of China's cold war. In 1955, China followed the Soviet Union's lawlership in the cold war between Western powers and the overall communist camp; but in 1963, she already had launched her own cold war against both the old enemy, i.e., the Western powers, and the new enemy, i.e., the Soviet Union and its satellites. The pattern showed clearly the direction of the Chinese

movement toward a world socialist revolution: She avoided the Soviet sphere of influence, and directly aimed at "new" areas under American influence.

To show the effect of the modification of the data on the pattern, the corresponding equations delineated with other data sets (T, R, and RT) were presented along with the original equation in Table 16. To show the fit of the model to the data, the cold war behavioral pattern scores (TRADE - NECOM) were plotted against the political orientation distance scores (CTRAD) in Figure 8.

In this pattern, trade activities were taken as an indicator of the cooperative behavior of China. Then, can we say that trade reflects the policy attitude of the Chinese government toward other nations? The answer is yes.

In many studies in the field of international relations, trade has been used to indicate how salient one nation is to another. 140 This is partly because trade can be regarded as a political instrument with which one nation can control another. Directing trade affords a nation two kinds of advantages. First, trade is an instrument of cultural and political penetration. Second, if one nation can achieve a decisive position as a supplier or customer of another, it can exercise a critical influence on the political and economic policies of the other. 141

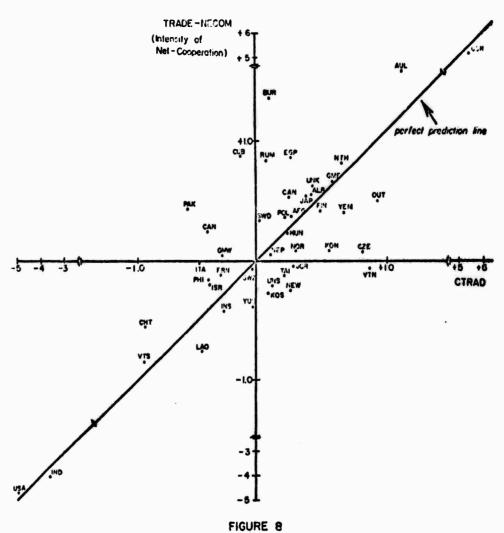
¹⁴⁰ The number of studies which used trade as an indicator of the degree of transactions between nations is innumerable, especially in the field of integration studies. See, for example, Deutsch, 1957; Savage and Deutsch, 1960; Kitzinger, 1961; Brams, 1966 and Russett, 1967.

¹⁴¹ For a detailed discussion on the political implication of directed trade, see Padelford and Lincoln, 1962, pp. 413-415.

TABLE 16

CANONICAL STRUCTURE EQUATIONS

FOR CHINA'S COLD WAR BEHAVIOR (TRADE - NECCH!)


	Ü	1/2 174	26.	.97	Ė,	8	.80	.93	₹ 6.
	DMMHG					-39			
	គ ប០គ.	H.		-35					
	иолся								
	ប្អូនមាល					S		2	36
	BOOHE								
ces	≱अनेक्र							<u>-5</u>	-35
ATTRIBUTE DISTANCES	ишенц								
RIBUTE	окних								
ATT	ನದಿಜ್ ಗಗಿ								
	DKAHU	30	37				-31		31
	のよび宝典						-36	-43	
	บก>ตา						ğ	37	54-
	мнжом	76	11	79	-72	-31			
	質の質問用		94		1.7		-34		-1
	> H & H H		Ж				-43	1,3	37
Lo	00200						577	5 è	CT
OR FACTORS	KOOM	35	3	-39		-66	70	-16	62
	日とより								
эени	напри								
	нанан	53	-53	79	57				
	P K ◀ D M	65		. 65	-72	-67		74-	
		PO	н	es,	RT	0	€→	æ	8:
[24	でくられる状と		× ~ r	^		+1 (7.9	n	

Rior computation, Charles Wall's CANONICAL program was used.

Dinese are factor label codes.

Canonical correlations. All correlations are significant at the .0005 level.

do = Original data (Sl dynds), T = Transformel data (31 dynds), R = Reduced data (55 dynds), RT = Reduced and Transformed data (55 dynds). Only loadings that exceed .30 are given in the table. Signs are as appeared in the original computer outputs. Decimal points are removed.

CHINA'S COLD WAR BEHAVIOR (TRADE-NECOM)

(canonical variate scores)

Furthermore, the reputation of trade as a valuable indicator was reinforced by the availability and relative accuracy of the data.

In addition, the study of trade has a special meaning for China, because her trade is not merely controlled but directly operated by the government. Thus, trade for China is much more sensitive to politics than for the free nations.

In this pattern, the pattern score is a function of TRADE and NECOM. That is, the score is the remnant value of TRADE after the NECOM value has been subtracted. Therefore, a dyad will have the maximum score when the object nation trades most with China while it receives the least negative communication from China. On the other hand, a dyad will have the minimum pattern score in this cold war pattern when the object in the dyad does not trade with China and receives the greatest negative communication from China.

Thus, we can formulate a scale for the cold war pattern score for a dyad as drawn in Figure 9. As we can see from the figure, the dyad which has a high pattern score does not necessarily have high trade. A big trade partner may have a medium pattern score if she receives nigh negative communication from China.

If we compare this pattern to China's power-interaction pattern discussed in Section 9.1, we can have greater insight into the nature of China's trade, because both patterns comprise TRADE and NECCM. As discussed in Section 9.1, in that power-interaction model, TRADE + NECOM were explained by power distance. But, as discussed above, in the cold war pattern TRADE - NECOM is explained by the difference in political

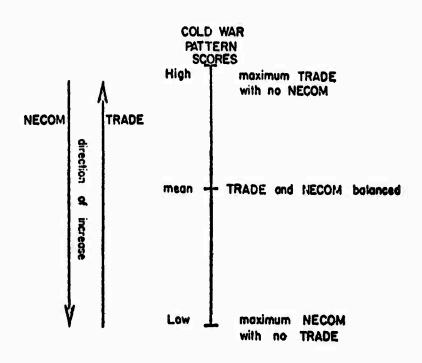


FIGURE 9
SCALE FOR COLD WAR PATTERN SCORES

orientation. This suggests to us that the same trade activity is explained by different attribute distances in different contexts.

Then, in what context is China's trade involved in the interaction pattern as TRADE + NECOM? When is the cold war pattern TRADE - NECOM? My argument is that the decision makers have different decision patterns formulating foreign policy with regard to trade and verbal attack: One is a "power pattern" where "power distance" is the criterion; and the other, may be called a "political orientation pattern." In application of this "double pattern system," it seems that if the object's power is great enough to be considered as a threat to China, she applied the first system; but, if the "power" of the object is not so significant, she applied the second model.

To understand this dual system, it may be helpful to consider two different characteristics of China's trade. For China, as a country, trade is an economic necessity: For example, she has to import machines, tools, etc., to achieve industrialization. On the other hand, as will be discussed in Sections 9.3 and 9.4, China as the leader of the world social revolution, utilizes trade as an instrument for political penetration. A careful examination of the items China traded with each object nation 142 shows these two clearly different kinds of trade. Thus, the first kind of trade, "trade for necessity" takes the form of TRADE + NECOM pattern with POWER as the leading

¹⁴²See Eckstein, 1966, section 4 of Chapter 4, "Commodity Composition of Communist China's Foreign Trade," pp. 103-17. Especially, Table 4-5 (pp. 106-7) and Table 4-7 (pp. 114-5). See also Sawyer, 1966, Chapter 3, "Commodity Patterns" (pp. 25-40).

explanatory variable, while the second kind of trade, "trade as a political tool" takes the form of TRADE - NECOM pattern with PORIE as the leading explanatory variable.

The relations between the interaction pattern (TRADE + NECOM) and the cold war pattern (TRADE - NECOM) can be clarified if we rely on the status-field theory discussed in Section 9.1. When I discussed the Cooperation (CO) + Conflict (CF) pattern of Rummel's status-field theory in Section 9.1, I also reviewed his new concept of an interaction dimension which is loaded highly by the two independent "clusters" of variables: CO and CF. Now, I will extend this concept to another pattern of CO - CF.

- 1) Let us suppose that TRADE (CO) and NECOM (CF) are independent, and the joint interaction dimension (I) passes between the two vector clusters (see Figure 10). Then any dyad $(b_{i\rightarrow j})$ in the space within the two orthogonal vectors, TRADE and NECOM, has a value on I dimension (1) which is the sum of the value on TRADE vector (t) and that on NECOM vector (n); i = t + n.
- 2) If we extend the NECOM vector in the direction opposite the origin (0), this negative NECOM vector (\overline{N}) and TRADE vector again bound a space. If we draw one new dimensional vector which is orthogonal to I, and name it P, then the P will pass through this space bounded by \overline{N} and T. Any dyad in this space will have a value on this P dimensional vector (p) which is the sum of the value on \overline{N} (-n) and T (t): $p = t n_0$
- 3) From Figure 10, we can easily say that the dyad in T and N boundary has always a greater i value than p value, and the dyad in \overline{N}

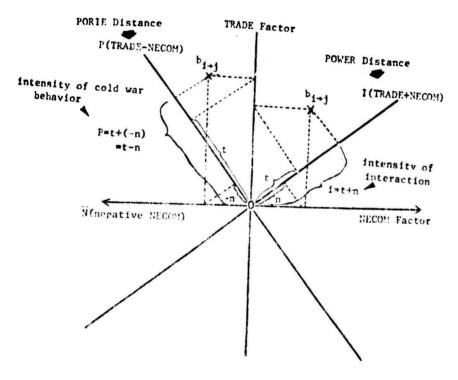


FIGURE 10

COLD WAR PATTERN (TRADE-NECOM)
COMPARED TO INTERACTION PATTERN (NECOM+TRADE)

and T boundary has always a greater p value than i value.

4) Suppose the I behavior dimension is highly correlated with the power distance dimension in A-space and P with the political orientation difference dimension, respectively. Then, for each dyad, i (= t + n) is better explained by power distance, than by political orientation difference, while p (= t - n) is better explained by the political orientation difference than by the power distance.

From this, we have two different behavior patterns: TRADE + NECOM = f (power distance), which is my "power pattern," and TRADE - NECOM = f (political orientation difference), which is my "political orientation pattern." 143

9.3 Formal Diplomacy of China

Formal diplomacy in this study is defined as "the behavior of establishing diplomatic relations with other nations and maintaining those relations." The formal diplomacy factor emerged distinctly from the factor analyses of B-space in all four parallel data sets for both years, with DIPFP (diplomat sent from Peking) and DIPTP (diplomat to Peking) as the high loading variables. 144

 $^{^{143}}$ If we express the two patterns in one equation, we have the cooperation and conflict theorem of Rummel's status-field theory. Instead of political orientation, let us put economic development (ED). Then, the above two equations will be CO + CF = f(PD), and CO - CF = f(ED), where PD is power distance. If we add the two equations, then, CO = f(PD + ED), and if we subtract the second from the first, CF = f(PD - ED). By giving some adequate parameters, and rearranging them, this will be easily transformed into CO + CF = $(\alpha_1 + \alpha_1)d_1 - (\alpha_2 + \alpha_2)d_2$.

¹⁴⁴The loadings (original data set) were .90 for both DIPFP and DIPTP in 1955 and .96 for both variables in 1963.

The pattern found for China's formal diplomacy, in the form of the structure equation, 145 was

Although seemingly complicated, since there are so many factors involved in both sides of the equation, a closer examination of the relationships reveals a simple linkage. First, the left side factors are all related to the administrative behavior of maintaining friendship in the world community. FDIPL and CONGO are purely administrative behaviors, while TRADE and ECAID are supporting behaviors to achieve friendship. Second, the right side factors (attribute distance) comprise two groups: cold war group identifiers (PORIE, WESTC, URAID), and the indicators of Asian neighbors (ORIEN, DIVER).

A verbal interpretation of the pattern, then, is that the stronger the object nation's ties to the Communist camp and the stronger her cultural affinity to China, the stronger are the formal diplomatic ties with China.

This time the strength of the pattern linkage was not so strong. The \mathbf{r}^2 was .53 and this means that a little more than half of the total variance was accounted for by the relations.

Although the basic forms of the relationship were similar, one noticeable shift of factors was detected between the equations of 1955 and 1963. The TRADE factor disappeared in the 1963 equation. As men-

¹⁴⁵ For the equations with other data sets, see Table 17.

TABLE 17
CANNICAL STRUCTURE EQUATIONS
FOR CHIMA'S FORMAL DIPLOTACE

	<u> </u>	1	_						
	, r	:1	.3T*	٤.	. T	.85	8	ま	.93
	DWAHU			8				-	
	E-U0#E				84-				
	nowor			8	Ì				
	ପ⊨ଲ≪ର		8					-63	
	#ONH∢		•		8			۲	
	> 4 4 4 4				-38				
INCES	3444				9				
DIST	OH>WK	3		55	Ŗ				
ATTRIBUTE DISTANCES	ОКНИЖ	3				24			
L.	∢ ⊕≈∺∪		8		-38				
	D.K. < H.D.	-39	-40	-39					
	3 M N H C	*		£43				4	-35
	ON>M1		9					•	•
	6.0 K H M	2	''I	8		.00	4	-	82
	403 Na			-		\$	ą	-51	•
	> + 0 + +		-		6				-
			3		\$				i
S	00 11 00	33				2		34	
PACTORS .	MNOOM				8			8	
	名りませる	8		ř		×	Ħ		
BEKAVIOR	нжана		3						
	FOHER	ĸ	69	19	8	92-	83	19-	-93
	4 E < Q N	, P	- OE-	-20	14	,		64	
		PO .	F-	æ	5	٥	•	~	ž.
M ≪ U H O M N			N 10 1	^		A 6	200	<u> </u>	

Por computation, Charles Hall's CAMONICAL program was used.

These are factor label codes.

Canonical correlations. The correlation with a is not significant at the .25 level. All others are significant at the .0005 level.

do = Original data (31 dyads), T = Transformed data (81 dyads), R = Reduced data (55 dyads), R = Reduced and Transformed data (55 dyads).

Coly loadings that exceed .30 are given in the table. Signs are as appeared in the original computer outputs. Decimal points are removed.

ching fen-ii" pol - 10 "division of politics and business," strongly advocated by the Chinese policy makers. The equation for 1963 was

When China was a young country (1952), she was contained in the sphere of international Communism. Recognized mainly by the other colleagues of the Socialist Camp, she generally traded with the members of the bloc. In the pattern, therefore, FDIPL and TRADE appeared in one equation. In 1963, however, China was mature enough to claim her own identity in the world community. No longer a puppet of international Communism, she began to trade for necessity, ignoring the political orientation of the object nation. The "cheng-ching fen-li" policy was convenient for her under these circumstances as it always has been for similar cases in Oriental culture. 146

Formal diplomacy has a special meaning for China, somewhat different from other European countries. Historically, China's foreign policy centered around formal diplomatic relations. The core of the well-known tributary system of China's past dynasties (especially of Ming and Ch'ing) had been the maintenance of formal supremacy of the Chinese court over other nations, even though this has not necessarily

divided countries: China, Korea, Vietnam and Germany. Inoguchi's view was different (Inoguchi, 1970, p.50). He viewed that China's trade was determined by political consideration. "is view was that China's dominant policy on trade was "cheng-ching bu-ke-fen" (indivisibility of economics from politics) instead of the "cheng-ching fen-li" policy.

provided economic advantages or other benefits to China. The same principal had been retained after 1949. 147

can understand why China has maintained and still maintains stubbornly the "Hallstein Doctrine," which in China's case means "she will not establish diplomatic relations with those who recognize the Republic of China (Taiwan) as a separate entity other than the not-yet-liberated portion of China." In this vein, we must understand that her formal diplomatic behavior toward other nations has much more political implications rather than a mere administrative behavior.

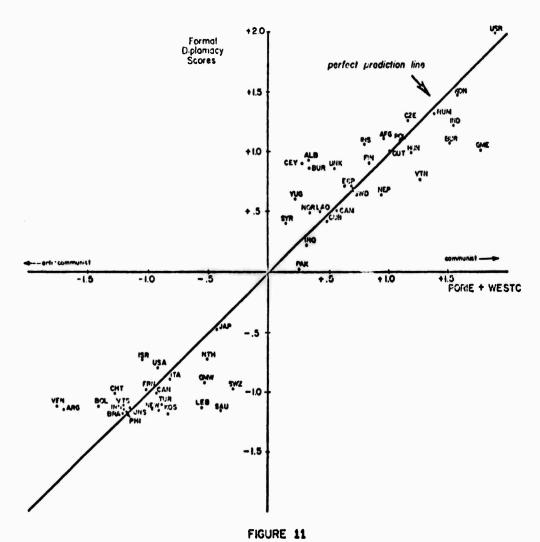
In the formal diplomacy pattern of China, again we can spot the significant impact of the skewed nature of the original data. As we can see in Table 17, the differences among the patterns delineated by each of the four parallel data sets were remarkable, although the major forms of pattern relationship was retained. Presentation of one clearer pattern will have sense in order to see the effect of the extreme values. The same equation for the 1963 space with the RT data was

93 FDIPL + 82 PORIE - 35 WESTC
$$(r = .93)$$
 (34)

This is simpler than the equation with the original data presented earlier. This time the data was transformed and the number of cases was reduced by excluding "low-transaction" objects. The rela-

¹⁴⁷ The core concept of the Ch'ing tributary system and its relationship to Communist China's foreign policy, can be found in Rhee, "The Ch'ing Tributary System and the Foreign Policy of the People's Republic of China," unpublished monograph, 1969.

tion delineated to this equation may be said to be the clearest in the sense that the effect of the extreme values and low variance problem were simultaneously removed. The result tells us that China's formal diplomatic behavior can be explained by the political orientation of the object nation. The r for this equation was .93 which tells us that more than 86 percent of the total variance was accounted for by the model.


For a graphic check of the pattern relationship depicted by this equation, the predicted value of the formal diplomacy dimension for some interesting nations were plotted with the combined score of political orientation (PORIE) and Western culture (WESTC) dimensions in Figure 11 (RT-63 data were used).

In conjunction with formal diplomacy, it is worthwhile to look at China's activity in the realm of international organizations, since participation in international organization has also been regarded widely as an important administrative behavior 48 which keeps channels open for a nation to cooperate with others.

The list of NGOs of which China was a member shows that China was not active in international organizations. 149 For instance, in 1963 out of a total of 1722 NGOs, China nad membership only in 57 (in

¹⁴⁸ International organizations in this study refer to only NGOs. During the years covered by this study, China was a member of only one IGO, the Joint Nuclear Research Institute organized by seven Communist countries in 1956. Therefore, IGO was excluded from the study.

¹⁴⁹See Appendix I-B, the raw data table.

CHINA'S FORMAL DIPLOMACY
(canonical variate scores)

1955, 22 out of lead). Furthermore, these Noos were mostly sportsrelated ones. It is difficult to speculate why China did not show
interest in international organizations. One possible conjecture is that
China was not able to participate because of the objections of the
Western bloc nations. Most of the international organizations had been
established long before China became independent. The Republic of
China (CHT), with support from the Western powers such as USA and UNK,
has been an active participant in these organizations, and has consistently blocked China's entry.

The results of the canonical analysis indirectly supported this view (see Table 18). The results of the canonical analysis of the 1955 original data was

This meant that "the more a nation is developed (DEVEL and WELFA) the more memberships in NGO she shares with China." Considering that the absolute frequency of NGO memberships of a nation is directly proportional to her economic development, it can be expected that China would share more memberships in NGOs with wealthy, developed nations. Therefore, the finding does not mean much for China's foreign behavior.

TABLE 18
CANONICAL STRUCTURE EQUATIONS
FOR CHIMA'S JGO-COMPURENSHIP®

-	. oh	.59**	56	.54	æ	98	14	.83**	5.
	, DØ4HQ		8		•		9		-37
	6, U O R 6.				-34		•		•
	00408								
	O (1 E 4 A								3
	400H4								
S	>444	77		-33		8	97		
DISTAIR	M K H D	2	24		3				
ATTRIBUTE DISTANCES	OEHME		ň		្ដ				
ATTA	∢७≈ ∺0				33		4	-30	જ
	⊃≪ ≼ ∺Ω			3	,		-34	Ŗ	
	3 M N H C		8	9	-51				
	อพ>ผา	ż		33		ス		*	
	40EHN	<u> </u>			1	2		2	
_	. 40>44					쮸			
	> H W H (+	9	ķ	3			3		
S.	UORUO	-13	Ť	3	*	8	\$	*	-53
R FACTORS	ямоов								
BEHAVIOR	MUZHO		\$\$		57				
NE	няана		8		43				72
	ROHER		7		-35	3		ತ	
	THE KAN	<u>\$</u>					-51	3	3
		0	-	~	Ł	0		~	E
_	NAME NEOHUE			76	7.0				

For computation, Charles Wall's CANOXICAL program was used.

These are factor label codes.

Canonical correlations. **Significant at the .01 level. *Significant at the .10 level. Others, not significant at .10 level.

do = Original data (81 dyada), T = Transformed data (81 dyada), R = Reduced data (55 dyads), RT = Reduced and Transformed data (55 dyads).

Only load igs that exceed .30 are given in the table. Signs are as appeared in the original computer outputs. Decimal points are removed.

In 1963, the results of the analysis were almost similar to that of 1955. The equation was,

Again, the same tendency appeared; the more powerful, wealthier, and developed nations had more co-membership with China in NGOs. Only PORIE on the right hand side of the equation needs to be explained; China was better accepted by those NGOs where more socialist countries were participating.

9.4 Informal Diplomacy of China

Another important aspect of China's foreign policy was her informal diplomacy-diplomacy with the non-governing political party of the object nation.

One of the indisputable objectives of China's long-term foreign policy has been to spread communism, eventually, to achieve a world-

wide "social revolution." Furthermore, China has wanted to play a leading role in the process of this "socialist construction," and has insisted that other nations model their revolution after the Chinese "prototype." This long-range aim of China's foreign pelicy was based on the Chinese communists' belief in the historical

¹⁵⁰ This basic theme of China's foreign policy goal was expressed by Mao Tse-tung himself, as early as in 1949, saying that "...we must unite in a common struggle with those nations of the world who treat us on the basis of equality and with the people of all countries. This is to ally ourselves with the Soviet Union, to ally ourselves with all the New Democratic countries, and to ally ourselves with the proletariat and the broad masses of the people in other countries, to form an international united front ... in order to destroy imperialism and its running dogs." (Mao Tse-tung. "On the People's Dictatorship," delivered on July 1st, 1949. The English translation was taken from the China Digest, Vol. VI, No. 7). Halpern also clarified the longterm aim of China's foreign policy: "...to free China from foreign control and to make China once again great are the purposes of Chinese communist, as well as of the other Chinese governments. But in the communist's view, China can be freed only by associating herself with a world revolutionary movement aimed at transforming all existing societies. Further, in their view, China's greatness can be restored or assured only by her effective participation in this world movement ... The long-range aim of the Chinese communists, is not merely to get along in the world claiming for their country as much respect as the conditions let them attain. They aim beyond that to transform the world and to dictate the forms of organization of other societies into proletariat world order." (Halpern, 1968, pp. 2-3). See also Barnett, 1962, p. 85, Hinton, 1966, pp. 117-8, and Boyd, 1962, p. 84.

¹⁵¹Hinton, *Ibid.*, pp. 69, 117. Mao Tse-tung wrote "the Chinese revolution would exert a far-reaching influence on the revolution in the East as well as in the whole world" (*Selected Works*, Vol. I, p. 191). See also Boyd, *ibid.*, p. 84.

¹⁵² Hinton, *ibid.*, p. 117: "The CPC (Communist Party of China) certainly aspires to provide a 'model,' or example, and if possible a degree of leadership, for the whole of the underdeveloped areas (the 'oppressed nations')."

inevitability of the coming of a new world. 153 Mao Tse-tung stated that "...in the end, the socialist system will replace the capitalist system. This is an objective law independent of human will. No matter how hard the reactionaries try to prevent the advance of the wheel of history, revolution will take place sooner or later and will surely triumph. This kind of belief, of course, is a vision, not a policy or strategy. But, a vision, seriously believed, can affect policy choice, and the effect of this vision can be reflected in their strategy.

To promote the expansion of communism in "semi-colonial" areas, the Chinese have employed first a strategy of protracted struggle, "which is based on a belief in the ultimate success of persistent, cautious and flexible aggression against the imperialist countries." 155 As one of the instruments to carry out this struggle, she has made great use of "people's diplomacy," which is a non-formal, people-to-people (actually the Chinese government and the communist parties in non-communist countries) diplomacy as well as direct opposition to the West. 156 Since her independence, China has maintained a liaisen with

^{153&}quot;Chinese Communists accept as articles of faith the basic Marxist concepts of dialectical and historical materialism, world-wide class struggle, and the inevitable overthrow of 'decaying capitalism' by the 'proletariat' of all countries" (Barnett, 1960, p. 68).

¹⁵⁴Speech delivered on November 6th, 1957, in Moscow to the Supreme Soviet of the U.S.S.R., Current Background, No. 480, November 13, 1957.

¹⁵⁵Boyd, op. cit., p. 90.

¹⁵⁶See Boyd, ibid., p. 91, and Hinton, op. cit., p. 119.

most foreign communist parties, "by both covert and overt means."157

The basic dimension, "informal diplomacy," had as its highest loading variable PNOVT158 which was measured by the frequency of unofficial political visits from/to the object nations. Here "unofficial" means that the interaction was with non-ruling political parties in the object nations. Other variables loading highly on this factor were ECOVT (.66 in 1955, .74 in 1963) and ECOVF (.83 in 1955, .94 in 1963).

As I argued elsewhere, China maintains a "cheng-ching fen-li" policy. One way of implementing such a policy is to trade only with the non-governmental members of the Western countries. As a result, most visitors came for economic reasons acting in a private capacity, providing a nice cover for informal diplomacy. Thus, in many cases, the leaders of non-ruling communist parties in the West were able to visit China for "business purposes." If this is true, then, it explains why PNOVT clustered with ECOVT and ECOVF in the same factor group.

Comparing the two time points, 1955 and 1963, there was a noticeable shift of variables from the TRADE factor to the INDIP factor. That is, CULVT (.66), CULVF (.88) and CONCN (.66) which originally loaded

 $^{^{157}}$ Hinton, ibid., p. 120. For detailed interaction of the Chinese Communist Party with other communist parties, see Barnett, 1960, Appendix, "Peking and the Communist Parties of Asia" (pp. 476-501).

¹⁵⁸ The loading was .86 in 1955 and .88 in 1963. For other data sets, see Appendix II-B.

¹⁵⁹ Scrutinizing the news articles in Jen-min Jih-pao, for instance, I found that, for most Japanese communist party leaders who visited China, the announced purposes of their tour were business negotiations for a certain trading company or industrial sightseeing.

highly on the TRADE dimension in 1955, Loaded highly on the INDIP factor in 1963.

As discussed in 9.1, the shift can be explained in the following way: In 1955 when China was young, decision makers were not prepared to play the sophisticated diplomatic game, and as a result, cultural visits and newspaper coverage were naturally oriented, without any manipulative considerations, toward friendly nations (e.g. the Old-Guards in the socialist camp). In 1963, however, being already mature enough to launch skillful diplomatic campaigns, China's policy makers instrumentalized cultural visits and newspaper coverage as a tool for supporting informal diplomacy. With these slightly differing inner structures of the INDIP factors in 1955 and 1963 in mind, let us examine the structure equations that include INDIP in the set of behavioral combinations (for the equations with other data sets, see Table 19).

The equation for 1955 original data was

89 INDIP + 32 FDIPL + - 50 AGRIC - 37 ORIEN - 37 URAID
+ 36 CTRAD + 35 PORIE (
$$\mathbf{r} = .44$$
)

First, in B-space, China's INDIP behavior was partly linked to her FDIPL behavior, which was also explicable in terms of her lack of diplomatic skill as I mentioned above. Secondly, in A-space, the highest weighting was on AGRIC (.50), the agricultural characteristics of the object

¹⁶⁰Note that the Jen-min Jih-pao (The People's Daily), which was used as data source in this study, is published by the Committee of Party Paper (Tang Pao) which is supervised by the Central Political Bureau of the Chinese Communist Party. For details, see Chiang, 1960, p. 389.

TABLE 19

CANOTICAL STRUCTURE SQUATIONS FOR CHIMA'S INFORMAL DIPLOMACY®

	U h	4 7 3	*5	9.	9	9.	 g	74.	ą
	⊃ท≼∺ถ			<u></u>			<u></u>	-	
									r s
	400**			8			7	-35	-40
	00408			Ħ		4			
	0 H # 4 A	*			÷				
	PHNOT	[•	%		-36		7		
ន	>444×	:		-37	7		8		64-
ATTRIBUTE DISTANCES	OH>NE	Many	ř		2				
10 ST	ОКНИК	; 	•	•	·				
TRIBU	∢ଓ≈ ∺ଓ	, S	*	.9	:	3	-33	cy	
1		\$	m	&	1	•	T	Ţ	
		-37							
į	31年の中の					8	242	K	25
	บพ>ตา		7		**				
!	покны	×			i			#	
	20346	<u> </u>							
	> H W H H	<u> </u>		-31				-38	82
	00200		×	*	7		유		3
FACTORS	* MOOX								
AT RCI	MOKHA	1	45			\$	-10	5	9
RCIVAHSE	нвана	8	3	다	83	r.	Ş	z,	9
	*****	×		•			•		
	A. E. < Q M		~		0				
-		70	<u> </u>	~	RT -30		f+		<u> </u>
b.,	< U H O E 0	-	201		er;		200		15,

For computation, Charles Wall's CANONICAL program was used.

These are factor label codes.

Camonical correlations. The correlations with are significant at the .10 level. Others are not significant.

^dO = Original data (51 dyads), T = Transformed data (91 dyads), R = Reduced data (55 dyads), AT = Reduced and Transformed data (55 dyads).

Only loadings that exceed .30 are given in the table. Signs are as appeared in the original computer outputs. Decimal points are resowed.

nation, followed by ORIEN (.37). These two factors together imply that the targets of China's informal diplomacy were her "underdeveloped agricultural Asian neighbors" rather than other industrial Western countries. This finding is interesting, because this exactly supports the proclaimed "periphery first" strategy of Mao Tse-tung's world communist revolution, which distinguishes Mao from Marx-Engels. 161

In A-space, there were three more factors which were all indicators of the object nation's relation with the socialist camp (URAID, CTRAD and PORIE), that is, the less the influence from the Old-Guard socialist (USR) on the object nations, the more the informal diplomatic connection China has with them. These factors, then, just reinforced the effect of AGRIC and ORIEN.

The pattern was not salient in terms of the canonical correlation. The correlation was .44, which means that the pattern accounted for less than twenty percent of the total variance. Furthermore, the pattern disappeared in 1963. As we can see in Table 19, there is a corresponding pattern equation. The correlation, however, was too low (.40) and statistically non-significant. This implies that the informal diplomacy pattern discussed in this section is unreliable for

¹⁶¹ Mao praised Lenin's idea of the "East Round-About Strategy" which said "...the road to Paris is via Feking: liberation of the West is after that of the East; and the road to world revolution is through the East not through the West" (Kim, 1964, p. 33).

¹⁶² The correlation was significant at .10.

 $^{^{163}}$ The Z value was -0.5. With 18 degrees of freedom, significant Z value at .10 is 1.310. See Table 13-2, \circ -6.

practical use, although the finding provides us a suggestive model for China's informal diplomacy.

9.5 Penetration Policy of China

Since the end of World War II in the international political scene, economic aid and political visits by high ranking political leaders have been the most common way in which the major powers woold the developing nations. Economic aid ties a recipient nation to her donor, and political visits by a leader of the nowers assure the recipient of their security.

China, as a nower, was not an exception. As a pre-landing salvo for her next diplomatic manoeuvre, China usually first utilized informal diplomacy, followed by the establishment of formal diplomatic relations. Then, to tie the object into her orbit, she gave economic aid and exchanged visits by high ranking officials including the head of the government.

Considering Chinese backwardness in economic growth, the decision to give aid must have been much more difficult for her to make than for other powers. Thus, we can say that China's decision was the result of a careful calculation of her long-range policy and, therefore, should be regarded as a very important signal of her future intentions. Thus the ECAID scores can be considered to be a useful indicator of China's strong determination for political penetration.

The delineated pattern for China's penetration policy behavior from 1955 data (for the equations With other data sets, see Table 20) was

which may be interpreted verbally as the following: China's penetration policy targets were chosen to include Asian agricultural neighbors (ORIEN, AGRIC) where the influence by the Soviet Union was relatively low (URAID, CTRAD), who had unstable relations with other nations (FCONF).

The appearance of FDIPL and CONGO on the left hand side of the equation indicated that in 1955, China was still in the stage of soliciting other nations for diplomatic recognition and political tools such as CONGO and VISIT were utilized for that purpose. In this sense, it was no wonder that in 1963 on the B-space side of the equation VISIT and CONGO were replaced by INDIP, which implied that economic aid now became a manipulative instrument, together with INDIP for the protracted struggle.

The equation for 1963 was

But this equation was again statistically non-significant (Z = .01). Then, why such a salient pattern in 1955 (r = .87) turned into such a weak (r = .45) and non-significant pattern? One possible

CANDICAL STRUCTURE EXPANDES FOR CHIEF STRUCT (STAID)*

	υ ₆ ,	\$	3,8	g.	.33°4	24.	•¥:	ạ	3.
	DW4110				43	ņ-	¥		X
	F1011F	×	ş	\$	%	Ŗ			
	10016 M								
	U(+840	a					*		

12	>416K					1 5-	ĸ	ķ	Ç.
ATTREATE SIGNATES	OH > NE				*	ř.		a	*
13.	0 K M H R	Ĩ	•	7		٠		7	¥
V	40 RHU	×		8					Ŗ
	9#4HA	a	2	2	4	63	7		
	3 M W F U				Ħ	*			ı
	UM>47	0	Ą		æ			-39	×
	8.0 K H M								
	803ME								
	> 14 th 14 fe	15	8	8				Ŧ	ļ
	U0=U0	#	×		3				
PACTORS	MOON								
BEHAVIOR P.	MUKHA	Ş	*	\$	22	\$	53	ş	\$
VEE V	HEGHS					3	3	24	\$
	маныч	å		æ		Ж	\$		
	##<0M	Ф ₀							-35
			H	*	E	۰	(4	æ	멅
6.	∢∪(+0≈ 0		200	^			90	7	

For computation, Charles Wall's CANDMICAL progress was used.

These are factor label codes.

Canonical correlations. "Significant at the .005 level. "Significant at the .05 level. Others set significant at .25 level.

do = Original data (31 dyads), T = Transformed data (61 dyads), R = Reduced data (55 dyads), RT = Reduced and Transformed data (55 dyads).

Conly loadings that exceed .30 are given in the table. Signs are as appeared in the original computer outputs. Decimal points are resorted.

many new African nationalish and in this study most of these newly independent nations were omitted from the analysis. The disappearance of ORIEN, AGRIC and GTRAD as high loading factors from the right hand side of equation 39 partly supports this view that China dropped the criterion of "Asian neighbor" in choosing her policy target and broadened her strategic sphere into other underdeveloped areas in Africa and Latin America.

Although the penetration pattern of China discussed above is not prominent un a model, it supports the view of most of the China watchers on Mao's "social construction" scheme: from rural areas (Asia, Africa and Latin America) to the urban area (Western Surope and North America). 165

North Korea, North Vietnam, Outer Mongolia, Nepal, Cambodia, Indonesia, Albania, Hungary and United Arab Republic. The recipients in 1963-4 included North Korea, North Vietnam, Outer Mongolia, Burma, Nepal, Ceylon, Syria, Yemen, Hungary, Cuba, Guinea, Algeria, Ghana, Tanganyika, Mali, Congo, Kenya, and Somali (underlined are non-Asian nations). In 1955-6, thirty percent were non-Asian, while in 1963-4, sixty percent were non-Asian. Source: It is the Ch'ing Nien pac), 1967.

¹⁶⁵See footnote 161.

9.6 Summary

In the above five sections, we discussed four distinct and two suggestive behavioral patterns of China. The findings can be summarized as follows:

The four distinct behavioral patterns of China discovered in this study are:

- 1) The over-all intensity of Chinese interaction with a nation measured by summing her cooperation and conflict behavior with that nation is mainly determined by the power distance of the nation from China. The more powerful a nation, the more likely that she has intense interaction with China.
- 2) The amount of the net cooperation of China with a nation (remnant cooperation after subtraction of conflict) is mainly determined by the difference of the nation in political orientation from China. The more similar a nation's political orientation to China (more communist party members and more trade with communist nations), the more likely that she has high net cooperation with China.
- 3) The formal diplomacy of China, measured in terms of the duration of diplomatic relations established, is largely determined by the object nation's political orientation and cultural affinity to China. China's formal diplomacy was directed mainly to the members of the socialist camp.
- 4) The degree of Chinese cooperation with a nation in international organization is mainly determined by the nation's economic development, and partly by the nation's political orientation. The

more developed a nation, the more likely that she shares membership with Chiva in range international organizations.

The two suggestive patterns found in the study are as follows:

- 1) The informal diplomady of Thina, remained in terms of the strength of China's interaction with non-ruling parties in the object nation, is found to be clearly oriented to world rural areas—non-communist, agricultural Afro-Asian nations.
- 2) The target of Chinese political penetration, measured in terms of the amount of economic aid and official visits, was revealed to be her unstable, developing Asian neighbors who were under American influence and where the Soviets has little interest.

Relations of the findings to current theories in international relations are:

- 1) The result strongly supports Rummel's status-field theory theorem that the joint behavior of cooperation and conflict are well explained by power distance and difference in economic development together.
- 2) The result partly supports the original struct theory action that conflict is more likely when there is a great power disparity between two nations. Partly, because this is true only if the disparity is positive (the object nation is more powerful).
- 3) The result supports the power transition theory (Organski) that when a new emerging power (China) challenges the old existing power, conflict is more likely.

CHAPTER X

RESULTS OF APPLICABILITY TESTS

As discussed in 4.5, to test the applicability for a practitioner of the empirically derived prediction models for China's foreign behavior, the 1963 behavior scores were forecast with the MRM and the CRM, respectively. The forecast scores, then, were compared with the actual observed scores.

The underlying logic is that, if field theory is valid, and, therefore, China's perceptual (P) and behavioral (Q) frameworks are the same across time, the structural equations that explain China's foreign behavior systems, which is generated from the data at one time point, should be applicable at any other time point. In short, the models, once generated, should be applicable under any circumstances. 166

The tests were performed with 1955 and 1963 data using the 1955 model to predict the 1963 behavior scores: First, from the analysis of the 1955 data, the P and Q (in the MRM, P only) in equation (18) (10 for the MRM) were calculated. Then, applying P and Q of the 1955 models to the 1963 attribute distances, the 1963 behavior scores were forecast (w). The forecast score of each behavioral factor were correlated with the corresponding observed score.

¹⁶⁶This implies that a nation's foreign behavior decision making system is invariable across time. Attribute distances and actual behavior may change. But the pattern relationship between them should be unchanged.

As discussed in Chapter IV, the tent was carried out three times:

1) Forecasting the factor accres of behavioral basis dimensions with

MRM, 2) the name forecasting with CRM, and i) forecasting the behavioral

pattern scores (canonical variage scores) with CRM. The results are

given in Table 21, 32, and 23, respectively.

10.1 Forecasting Rehavioral Scores with MRA.

Out of the neven forecast behavioral scores of 1963 with MRM, three were fairly good. The correlations between the Forecast and observed scores for FDIPL (foreign diplomacy), NECOM (negative communication) and CONGO (co-membership in international non-governmental organization) were .70, .69, and .70, respectively. This means that for these three, we could forecast about half of the variances of the 1963 behavior with the MRM model. The next good forecast was for TRADE (trade). The correlation was .55 which meant that thirty percent of the variance in the 1963 trade behavior could be forecast by the model. For the remaining three behaviors, however, the correlations were low: .32 for INDIP (informal diplomacy), .26 for ECAID (economic aid) and .05 for VISIT (official political visit). The mean of the squared sum of the seven correlations was .28 (trace r = .53), which meant that approximately one-third of the total variance of the seven behaviors could be predicted with the model.

The forecast results were encouraging in that with few exceptions, the off-diagonal correlations in the table were very low. That most off-diagonal correlations were near zero strongly indicates that the decision framework of Chinese policy makers was fairly invariant

TABLE 21
TEST RESULTS OF FORECASTING 1963 BEHAVIOR FACTOR SCORES
WITH MULTIPLE REGRESSION MODEL®

				OBSERVED									
			1	2	3	14	5	6	7				
			T R A D E	F D I P L	I N D I P	E C A I D	N E C O M	C 0 N G	V I 8 I T				
FORECA	123456	TRADE FDIPL INDIP ECAID NECOM	.55	.70	.32	.26	37 .69	70	.31				
T Med	T 7 VISIT .05 Mean of the squared main diagonal elements = .28 (trace												

Figures in the table are product-moment correlations. Only the correlations that exceed .30 are given (on main disconal, all are given).

TABLE 22
TEST RESULTS OF FORECASTING 1963 NEWAYLOR FACTOR SCORES
WITH CARONICAL REGRESSION MODEL^A

			OBSERVED								
			1	2	3	14	1)	G	7		
			T	F	I	E	N	C	٧		
ļ			R	D I	N D	C A	E C	0 N	I S		
			D	P	1	I	ŏ	G	I		
L			E	L	P	D	K .	0	T		
F O R E	1 2 3	TRADE FDIPL INDIP	. 44	.69	.32		 36				
c	4	ECAID NECOM				.08	.35 .65				
A S	5 6 7	CONGO					.07	.65	.03		
Mean of the squared main diagonal elements = .23 (trace r = .49)											

Figures in the table are product-moment correlations. Only the correlations that exceed .30 are given (on main diagonal, all are given).

TABLE 23
TEST RESULTS OF FORECASTING 1963 BEHAVIOR PATTERN SCORES
WITH CANONICAL REGRESSION MODEL^a

			FORECAST ^b BEHAVIORAL PATTERN									
	ACTUAL ^C BEHAVIOR PATTERN		I	II	III	IV	V	VI	VII			
I	INTERACTION	•97#	.85					-				
II	COLDWAR	.92*		•33		,		. 34				
III	INT'L ORG	.86*		•32	. 52			.44				
IA	FORMAL DIPL	.85#		. 38		.51						
v	PENET (ECAID)	.44					•33					
VI	INFORMAL DIPL	.40						.07				
VII	PENET (VISIT)	.20							.12			
Me	Mean of the squared main diagonal elements = .21 (trace r = .46).											

Figures in the table are product-moment correlations. Only $r \ge .30$ are given (on main diagonal, all are given).

W is calculated from the following equation.

$$\hat{W} = D_{63}P_{55}$$

where D_{63} is the attribute distance matrix of 1963.

P₅₅ is the canonical regression weights of D distance matrix from 1955 data analysis.

bForecast canonical variate scores w.

^CCanonical variate of 1963 behavioral factors.

dCorresponding canonical correlation in 1963 study. Asterisk (*) shows that the r is significant at .05 level.

across time (from 1955 and 1963), because it tells us that similar weightings (P) were applied to the attribute distances (D) in both 1955 and 1963 to decide each behavior (W).

10.2 Forecasting Behavioral Scores with CRM.

As discussed in Chapter IV (4.5), the forecast results with CRM must be the same as those with MRM. Tables 21 and 22 confirm our expectation. Both tables look quite similar with the same high correlations (about .70) for FDIPL, NECOM, and CONGO, and the same medium correlation for TRADE in both tables.

But, in a one by one comparison of the correlations in the two tables, we can find that the correlations with CRM are slightly lower than those with MRM. This is because there were more computational errors in the CRM results. 167

The forecast scores of the three good predicted behaviors are plotted against each corresponding observed score in Figures 12, 13, and 14, respectively. 168

10.3 Forecasting Behavioral Pattern Scores with CRM.

The behavioral pattern scores are the weighted sum of the behavioral scores in the pattern [see Chapter IV, 4.5 (2)]. For example, the interaction pattern discussed in 9.1 was (.88 TRADE +

Which is simpler than the one for CRM, $\hat{W}_{63} = D_{63}P_{55}$, which is simpler than the one for CRM, $\hat{W}_{63} = D_{63}P_{55}Q_{55}^{-1}$.

¹⁶⁸Since the results of the MRM and the CRM were very similar, only those of the CRM were plotted.

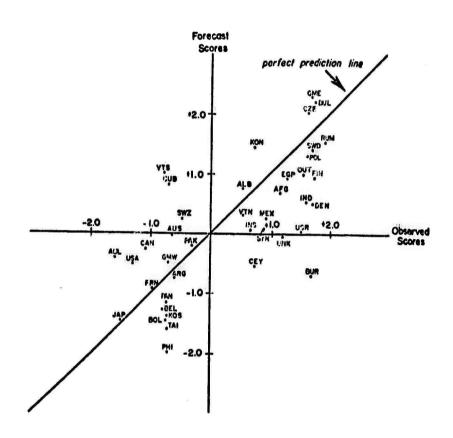


FIGURE 12
CHINA'S FORMAL DIPLOMACY SCORES:
FORECAST VS. OBSERVED

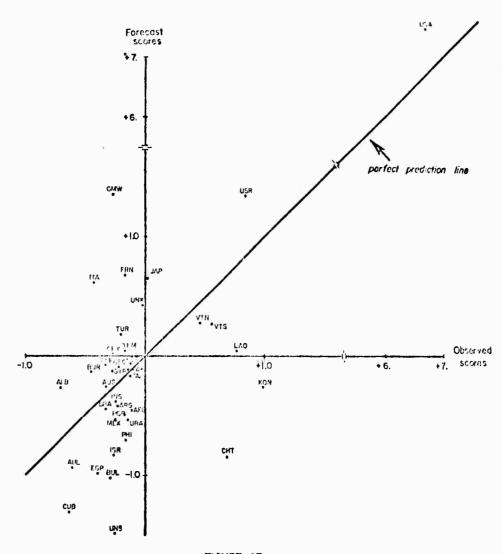


FIGURE 13
CHINA'S NEGATIVE COMMUNICATION SCORES:
FORECAST VS. OBSERVED

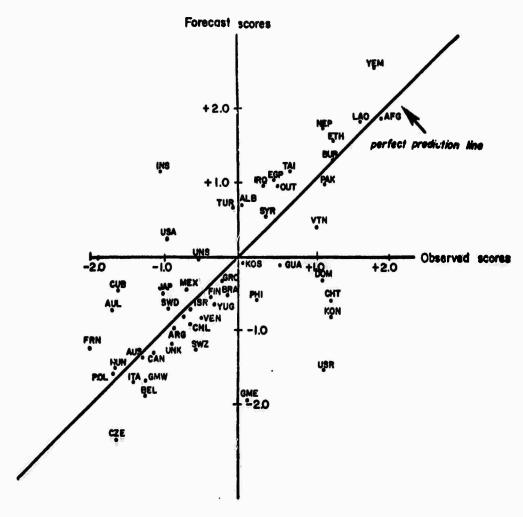


FIGURE 14
CHINA'S NGO CO-MEMBERSHIP SCORES:
FORECAST VS. OBSERVED

.46 NECOM) which was explained by POWER. The pattern score of a dyad for this behavioral pattern is, then,

.88 \times (factor score of the dyad on the TRADE dimension, + .46 \times (factor scores on the NECOM dimension).

In other words, the pattern score is the score of the canonical variate calculated from the canonical regression analysis.

As mentioned before (Chapter IV), the behavioral pattern scores for all dyads in 1963 were forecast from the 1963 distances with the 1955 weightings (P = perceptual framework). Then, these forecast pattern scores (\hat{W}_{63}) were correlated with the observed pattern scores (\hat{W}_{63}). The results were presented in Table 23.

Out of seven forecast pattern scores, the one for the first pattern-power-interaction pattern (TRADE + NECOM)--was strikingly good. The correlation for the pattern was .85 which means that more than seventy-two percent of the pattern variance was correctly forecast by the model. The result strongly supports that, at least, for China's interaction behavior, her foreign policy makers have invariant decision patterns: whenever they perceived the distances, they gave similar weightings to the attribute distances over time, and they applied a similar behavioral preference pattern in both years. The findings assure us that if we can tolerate about thirty percent error on the average we may apply this model to forecast future Chinese interactions from the power parity between China and the object nations.

The next good forecasts were for the international organization behavior pattern (r = .52) and the formal diplomacy pattern (r = .51). The accuracy of the forecasting for these two behavioral patterns was, in terms of the variance, about twenty-five percent. Although the accuracy is good enough to support the stable decision patterns, I think, the pattern is not stable enough to forecast actual intensity of the behaviors for practical use.

The forecast for the cold war behavioral pattern of China was not so good (r = .33). As we discussed in 9.2, the pattern was salient (canonical r = .92, significant at .05) in both 1955 and 1963. Thus, we could expect higher correlations in forecasting. This unexpected result may be attributable to Chinese shift from the traditional cold war led by the Soviet Union against Western Powers to a new cold war of her own, challenging both the Western Powers and the Soviet Union.

The results of forecasting for the remaining three behavioral patterns were not so good (r was .33, .07, and .12). This was because all three patterns were statistically not significant (see Chapter IX, introductory).

Figure 15 plots the forecast pattern scores of Chinese interaction with all object nations is 1963 against the actual scores.

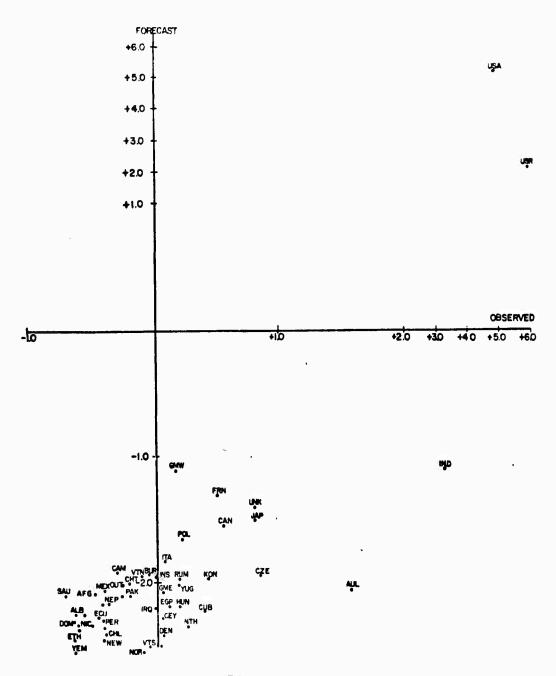


FIGURE 15
CHINA'S INTERACTION PATTERN
FORECAST VS. OBSERVED
(pattern scores)

CHAPTER XI

CONCLUSION

The study as f whole was quite successful. The only results that did not meet my expectations were the forecasts with the developed models. For several behaviors the forecasts were fairly good, but for some others, unsatisfactory. Nevertheless, the results as a whole were very encouraging.

First, despite the limitations on selecting variables and with possible errors in the data, Rummel's field theory Model II was found to be applicable to a one-actor dyadic behavior study. The proposed linear linkage between attribute distances and dyadic behaviors was found to exist, and a direct application of the model to empirical data was proven to be useful for delineating pattern relationships among behavior factors and attribute distance factors.

Second, as a whole, more than half of the total variance in China's behavior could be explained by the delineated linear patterns. Out of the seven patterns on China's behavior and attribute distance linkages, attempted to be formulated through the analysis, four empirically applicable patterns could be successfully delineated. These were: the Chinese interaction pattern, comprising of conflict and cooperation behavior and explained by power distances; the Chinese cold war pattern, measuring Chinese net cooperation with a nation, explained by her political orientation; the Chinese formal diplomacy pattern

which is linked to the object nation's political orientation and her cultural and geographical affinity to China; and Chinese cooperation with a nation in international organization, which is explained by her economic development. All of these four patterns were statistically significant and the predicting powers of these pattern models ranged from ninety-nine percent to fifty percent of the variance in behavior variables, which means that with these models, China's behavior can be practically explained and predicted.

Third, the stability of patterns across time was within the satisfactory range, considering the problems involved in data handling. This means that the pattern models can be utilized to understand the future behavioral pattern of China.

Although most of the empirical findings of China's behavior from the application of field theory only reconfirm our general knowledge about her behavior and no new significant pattern was delineated at this point, the findings as a whole have significant implications for the study of a nation's foreign behavior in general as well as China's foreign behavior particularly.

First of all, the study results clearly show us that we can approach the study of foreign behavior of a nation with a general theory. Traditionally, it has been believed by many that a nation's foreign behavior is idiosyncratic to that nation, and, therefore, it is dangerous or impossible to study a nation's particular foreign behavior with a general theory, because there are so many factors that compose a special context within which a foreign policy is formulated.

But this study showed that China as a nation also follows a certain general rule: her foreign behavior is a linear function of her similarity to and differences from the object nations on various attributes. This means that there is a law that underlies every nation's foreign behavior. As we have seen, the apparently unique behavior of China can be explained by a general law.

Secondly, the results showed us that a nation's unique foreign behavior decision making system can be studied from the "outputs" of the decisions. In the past, it was believed that we needed to examine the contextual background of the decision situation in order to define the unique decision making system of a nation. The personal history of key decision makers, the general belief system of the society, the historical legacy of the decision making apparatus, societal environmental factors that may affect the decision makers' perceptual bias, etc., were studied to uncover the foreign behavior decision making system.

In this study, however, all these factors were theorized to be contained in the decision makers' perceptual and behavioral framework. Then, by studying the resulting behavior, and without a detailed study of each factor, the unique perceptual and behavioral framework of the decision makers were defined, and it was found that the discovered framework by this way was reliable. Considering the difficulty of studying each individual factor which may affect the decision makers' perception and behavior, this way of defining the decision making system is very important. The results of this study showed this possibility very clearly.

Finally, the succinct pattern relationship between Chinese foreign behavior and her attribute similarity and difference with others, discovered from this study, provides us with a nice theoretical framework with which we can estimate possible Chinese behavioral response to the hypothesized attribute differences. For example, if we suppose that China reaches the same power level as the U.S.A. in 1980 with other differences remaining the same, what would Chinese interaction with the U.S.A. look like? The models developed in this study will give the answer. The application of the models to this kind of simulation will contribute much for policy practitioners.

After all, the study reinforced my conviction that international relations can be fruitfully studied with a theory, and that this is the only way to obtain generalizable knowledge of a nation's foreign behavior.

206

REFERENCES

- Ahmavaara, Yrjö, and Markkanen, Touko. The Unified Factor Model:

 Its Position in Psychometric Theory and Application to
 Sociological Alcohol Study. Helsinki: 1958.
- Alker, Hayward. "Dimensions of Conflict in the United Nations."

 American Political Science Review, LVI, 1964, 642-57.
- Anderson, T. W. Introduction to Multivariate Statistical Analysis.

 New York: John Wiley and Sons, 1958.
- 剪日子鈺 (Asahi Nenkan). Tokyo: Asahi Shinbunsha, 1956 and 1964.
- Azia Seikei Kakkai (アジア政経學會). 中國政治経済祭覧 (Chugoku Seijikeizai Soran = Political and Economic Views on Present Day China). Tokyo: Nikkan Rodo-toshinsha, 1964.
- Barnett, A. Doak. Communist China and Asia: A Challenge to American Policy. New York: Alfred A. Knopf, 1960.
- Barnett, A. Doak. "The Roots of Mao's Strategy." China: The Emerging Giant. Edited by Devere Pentony. San Francisco: Chandler, 1962.
- Bergmann, Peter Gabriel. <u>Introduction to the Theory of Relativity</u>.

 New York: Prentice-Hall, 1942.
- Berry, Brian J. F. "An Inductive Approach to the Regionalization of Economic Development." Essays on Geography and Economic Development. Edited by Norton Ginsberg. Chicago: University of Chicago Press, 1960.
- Bobrow, Davis B. "Peking's Military Calculus." World Politics, XVI, No. 2 (January, 1964), 287-301.
- Bobrow, Davis B. "Chinese Communist Response to Alternative U.S. Active and Passive Defense Postures." Paper presented at the Second Conference of the Strategic Interaction Panel, Oak Ridge, Tennessee, December 9-10, 1965.
- Bobrow, Davis B. "Old Dragons in New Models." World Politics, XIX, No. 2 (January, 1967), 306-19.
- Bobrow, Davis B. "International Indicators." Prepared for delivery at the 1969 Annual Meeting of the American Political Science Association, New York, September 2-6, 1969a.
- Bobrow, Davis B. "Ecology of International Games: Requirement for a Model of the International System." Unpublished monograph, 1969b.

- Boorman, Howard. "The Study of Contemporary Chinese Politics." World Politics, XII, No. 4, 585-99.
- Boyd, R. G. Communist China's Foreign Policy. New York: Praeger, 1962.
- Brams, Steven J. "Transaction Flow in the International System."

 American Political Science Review, LX, 1966, 880-96.
- Brams, Steven J. "Measuring the Concentration of Power in Political Systems." American Political Science Review, LXII, 1968, 461-75.
- Brody, Richard. "Some Systematic Effects of the Spread of Nuclear Weapon's Technology: A Study Through Simulation of a Multi-Nuclear Future." Journal of Conflict Resolution, VII, No. 4, 1963, 663-753.
- Cattell, Raymond B. "The Dimensions of Culture Patterns of Factorization of National Characters." Journal of Abnormal and Social Psychology, LXIV, 1949, 443-69.
- Ch'ang, Chin-yuan (常致遠). "十年來的中共宣傳工作 (Shin-nien lai te Chung-kung Shen-chu'an Kung-tso)." 中共十年 (Chung-kung Shih-nien). Hong Kong: Wu-ren chu-pan-she, 1960.
- Chugoku genkyuso (中国研究所). 新中国手鑑 (Shin Chugoku Nenkan). Tokyo: Kyuto-jiten, 1964.
- Cooley, W. W., and P. R. Lohnes. <u>Multivariate Procedures for the</u>
 <u>Behavioral Sciences</u>. New York: John Wiley and Sons, 1962.
- Cowards, H. R. Military Technology in Developing Countries. Cambridge, Massachusetts.: n. p. 1967.
- Dorrill, William F. "Political Research in Contemporary China: Some Problems and Opportunities." Monograph delivered at the Conference on Research in the Government and Politics of Contemporary China, Riversdale, New York, April 17-18, 1964.
- Denton, Frank, and Warren R. Phillips. "Patterns in the History of Violence." <u>Journal of Conflict Resolution</u>, XII, No. 2 (June, 1968), 182-95.
- Deutsch, Karl W. The Nerves of Government. New York: Free Press, 1963.
- Deutsch, Karl W. The Analysis of International Relations. Englewood Cliffs: Prentice-Hall, 1968.

- Deutsch, Karl W., et al. Political Community in the North Atlantic
 Area. Princeton: Princeton University Press, 1957.
- Durant, Will. The Story of Philosophy. New York: Simon and Schuster, 1953.
- Eckstein, Alexander. Communist China's Economic Growth and Foreign

 Trade: Implications for U.S. Policy. New York: McGraw-Hill,

 1966.
- Eddington, A. A. The Mathematical Theory of Relativity. Cambridge: Cambridge University Press, 1957.
- Fairbank, John King. The United States and China. Revised Edition. New York: The Viking Press, 1958.
- <u></u><u>**些情年報** (Fei-ch'ing Nien-pao). Taipei, 1967.</u>
- Galtung, Johan. "A Structural Theory of Aggression." <u>Journal of Peace Research</u>, II, 196^b, 15-38.
- Galtung, Johan. "Rank and Social Integration: A Multi-dimensional Approach." <u>Sociological Theory in Progress</u>. Edited by Joseph Berger, Morris Zelditsch, Jr. and Bo Anderson. New York: Houghton Mifflin, 1966.
- Glahn, Harry. "Some Relationships Derived from Canonical Correlation Theory." Econometrics, XXXVII, No. 2 (April, 1969), 252-6.
- Gleditsch, Nils Petter. "Rank Theory, Field Theory and Attribute Theory: Three Approaches to International Behavior." Unpublished monograph, University of Hawaii, 1969.
- Goldman, Marshall I. Soviet Foreign Aid. New York: Praeger, 1967.
- Greaser, Connie U. "Quantitative Analysis of the Sino-Indian Border Conflict, 1954-1962." Mimeo, University of Southern California, 1966.
- Gregg, Philip M., and Arthur S. Banks. "Dimensions of Political Systems: Factor Analysis of a Cross-Polity Survey." American Political Science Review, LIX, No. 3, 1965, 602-14.
- Haas, Michael. "Societal Approaches to the Study of War." <u>Journal</u> of Peace Research, No. 4, 307-23.
- Halperin, Morton H., and Dwight H. Perkins. Communist China and Arms Control. New York: Praeger, 1965.
- Halpern, A. M. Chinese Foreign Policy: Success or Failure? Canberra, Australia: The Australian National University, 1966.

- Harary, Frank. "A Structural Analysis of the Situation in the Middle East in 1956." Journal of Conflict Resolution, V, No. 2, 1967-78.
- Hempel, Carl G. "Fundamentals of Concept Formation in Empirical Science." International Encyclopedia of Unified Science, II, 1952.
- Hempel, Carl G., and P. Oppenheim. "The Logic of Explanation." Philosophy of Science, XV, 1948, 135-75.
- Hinton, Harold C. China's Relations With Burma and Vietnam: A Brief Survey. New York: Institute of Pacific, 1958.
- Hinton, Harold C. Communist China in World Politics. New York: Houghton-Mifflin, 1966.
- Horvath, William J., and Claxton C. Foster. "Stochastic Models of War Alliances." <u>Journal of Conflict Resolution</u>, VII, No. 2, 1963, 110-16.
- Horvath, William J. "A Statistical Model for the Duration of Wars and Strikes." Mental Health Research Institute Reprint No. 203, 1967.
- Hooper, John W. "Simultaneous Equations and Canonical Correlation Theory." Econometrica, XXVII, 1959, 249-56.
- Hotelling, Harold. "The Most Predictable Criterion." Journal of Educational Psychology, XXVI, 139-42.
- Hsieh, Alice Langley. Communist China's Strategy in the Nuclear Era. Englewood Cliffs: Prentice-Hall, 1962.
- IMF & IBRD. <u>Direction of International Trade</u>; <u>Annual Issue</u>. Vol. VII, No. 6, 1957.
- IMF & IBRD. Direction of Trade; Annual 1961-1965. 1966.
- 人民日報 (Jen-min Jih-pao). Peking: 1955 and 1963.
- Johnson, Chalmers. "The Role of Social Science in China Scholarship." World Politics, XVII, No. 2 (January, 1965), 256-71.

- Johnson, J. Econometric Methods. New York: McGraw-Hill, 1963.
- Kaplan, Abraham. The Conduct of Inquiry: Methodology for Behavioral Science. San Francisco: Chandler, 1964.
- Kerlinger, Fred N. Foundations of Behavioral Research. New York: Holt, Rinehart and Winston, 1964.
- Kim, Sang-Hyup (金相浹). 毛澤東思想 (Motaekdong Sasang = The Thoughts of Mao Tse-tung). Seoul: Jimoongak, 1964.
- Kitzinger, U. S. The Politics and Economics of European Integration.
 New York: Praeger, 1961.
- Koons, Paul B., Jr. "Canonical Analysis." <u>Computer Applications in the Behavioral Sciences</u>. Edited by Harold Borko. Englewood Cliffs: Prentice-Hall, 1962.
- Lagos, Gustavo. <u>International Stratification and Underdeveloped</u>
 Country. Chapel Hill: University of North Carolina Press,
- Leng, Shao Chuan. <u>Japan and Communist China</u>. Tokyo: Doshisha University Press, 1958.
- Levi, Werner. Modern China's Foreign Policy. Minneapolis: University of Minnesota Press, 1953.
- Levi, Werner. "Nepal in World Politics." Pacific Affairs, XXX (September, 1957), 236-48.
- Lewin, Kurt. Field Theory in Social Science-Selected Theoretical Papers. New York: Harper & Row, 1964.
- McClelland, Charles A. Theory and the International System. New York: MacMillan, 1966.
- McClelland, Charles A. "Access to Berlin: The Quality and Variety of Events."

 Quantitative International Politics: Insights and Evidence. Edited by J. David Singer. New York: Free Press, 1967.

- McClelland, Charles A. et al. "Performance in Crisis and Non-Crisis Quantitative Studies of the Taiwan Straits Confrontation, 1950-64." Report to the Behavioral Science Group, Naval Ordnance Test Station, China Lake, California, 1967.
- Morgenthau, Hans J. Politics Among Nations. New York: Knopf, 1966.
- North, Robert C. Moscow and Chinese Communists. Stanford: Stanford: University Press, 1963.
- North, Robert C. The Foreign Relations of China. Belmont, California: Dickenson, 1969.
- North, Robert C., Ole Holsti, and Richard Brody. "Perception and Action in the Study of International Relations: The 1914 Case."

 Quantitative International Politics. Edited by J. David Singer.

 New York: Free Press, 1967.
- Organski, A. F. K. World Politics. Second Edition. New York: Knopf, 1968.
- Padelford, Norman J., and George A. Lincoln. The Dynamics of International Politics. New York: MacMillan, 1962.
- Park, Tong-whan. "Asian Conflict in Systemic Perspective: Application of Field Theory (1955 and 1963)." Dimensionality of Nations Project, Research Report No. 35. Honolulu, Hawaii: University of Hawaii, 1969.
- Phillips, Warren R. "Dynamic Patterns of International Conflict."

 The Dimensionality of Nations Project, Research Report No. 33.

 Honolulu, Hawaii: University of Hawaii, 1969.
- Phillips, Warren R., and Dennis R. Hall. "The Importance of Governmental Structure as a Taxonomic Scheme for Nations." The Dimensionality of Nations Project, Research Report No. 18. Honolulu, Hawaii: University of Mawaii, 1968.
- Popper, Karl R. The Logic of Scientific Discovery. New York: Harper & Row. 1968.
- Pryor, Frederic L. The Communist Foreign Trade System. London: Allen & Unwin, 1963.
- Rapoport, Anatol. "Various Meanings of 'Theory'." American Political Science Review, LII, 1958, 972-88.
- Rhee, Sang Woo. "The Ch'ing Tributary System and the Foreign Policy of the People's Republic of China: A Quantitative Study."
 Unpublished monograph. Honolulu, Hawaii: University of Hawaii, 1969.

- Richardson, Lewis Fry. Arms and Insecurity. Pittsburgh, Pennsylvania: Boxwood Press, 1960.
- Richardson, Lewis Fry. Statistics of Deadly Quarrels. Pittsburgh, Pennsylvania: Boxwood Press, 1960.
- Rosenau, James N. "Pre-theory and Theories of Foreign Policy."

 Approaches to Comparative and International Politics. Edited by

 R. Barry Farrell. Evanston: Northwestern University Press,

 1966.
- Rosenau, James N. (ed.) <u>Linkage Politics</u>. New York: Free Press, 1969.
- Rudner, Richard S. Philosophy of Social Science. Englewood Cliffs: Prentice-Hall, 1966.
- Rummel, R. J. "Variable Definitions, Data Sources and Year." The Dimensionality of Nations Project. Honolulu, Hawaii: University of Hawaii, 1964a.
- Rummel, R. J. "Orthogonally Rotated Factor Tables for 236 Variables."

 The Dimensionality of Nations Project work paper. Honolulu,

 Hawaii: University of Hawaii, 1964b.
- Rummel, R. J. "A Field Theory of Social Action with Application to Conflict within Nations." General Systems Yearbook, X, 1965, 183-211.
- Rummel, R. J. "Attribute Space of Nations for 1963: Variable List."
 The Dimensionality of Nations Project, Research Report No. 5.
 Honolulu, Hawaii: University of Hawaii, 1966.
- Rummel, R. J. "The DON Project: A Five Year Research Program." The Dimensionality of Nations Project, Research Report No. 9. Honolulu, Hawaii: University of Hawaii, 1968a.
- Rummel, R. J. "Attribute and Behavioral Spaces of Nations: Variables and Samples for 1950." The Dimensionality of Nations Project, Research Report No. 13. Honolulu, Hawaii: University of Hawaii, 1963b.
- Rummel, R. J. "The Relationship Between National Attributes and Foreign Conflict Behaviour." Quantitative International Politics:

 Insights and Evidence." Edited by J. David Singer. New York:
 Free Press, 1968c.
- Rummel, R. J. "Indicators of Cross-National and International Patterns." American Political Science Review, LXIII, No. 1 (March, 1969a), 127-47.

- Rummel, R. J. "Field Theory and Indicators of International Behavior."
 The Dimensionality of Nations Project, Research Report No. 29.
 Honolulu, Hawaii: University of Hawaii, 1969b.
- Rummel, R. J. "Field Theory and Attribute Theories of Nation Behavior: Some Mathematical Interrelationships." The Dimensionality of Nations Project, Research Report No. 31. Honolulu, Hawaii: University of Hawaii, 1969c.
- Rummel, R. J. Applied Factor Analysis. Evanston, Illinois: Northwestern University Press, 1970a.
- Rummel, R. J. "U. S. Foreign Relation: Conflict, Cooperation, and Attribute Distances." The Dimensionality of Nations Project, Research Report No. 41. Honolulu, Hawaii: University of Hawaii, 1970b.
- Rummel, R. J. "Field Theory and the 1963 Behavior Space of Nations."
 Dimensionality of Nations Project, Research Report No. 44.
 Honolulu, Hawaii: University of Hawaii, 1970c.
- Rummel, R. J. "A Status-Field Theory of International Relations (Second Working Draft, April, 1971)." Honolulu, Hawaii: University of Hawaii, 1971.
- Russett, Bruce. <u>International Regions and the International System: A Study in Political Ecology</u>. Chicago: Rand McNally, 1967.
- Russett, Bruce, J. David Singer and Melvin Small. "National Political Units in the Twentieth Century: A Standardized List." American Political Science Review, LXII, No. 3 (September, 1968), 932-51.
- Sachs, Moshe Y. Worldmark Encyclopedia of the Nations. New York: Harper & Row, 1963.
- Savage, Richard, and Karl W. Deutsch. "A Statistical Model of the Gross Analysis of Transaction Flows." Econometrica, XXVIII (July, 1960), 551-72.
- Sawyer, Carole A. Communist Trade with Developing Countries: 1955-65. New York: Praeger, 1966.
- Scalapino, Robert A. "The Foreign Policy of the People's Republic of China." Foreign Policies in a World of Change. Edited by Joseph E. Black and Kenneth W. Thompson. New York: Harper & Row, 1963.
- Sellers, R. C. The Reference Handbook of the Armed Forces of the World, II, 1967.

- 世界知該年鉴 (Shih-chieh chih-shih nien-chien). Peking: Shih-chieh Chih-shih chu-pan-she, 1961 and 1964.
- Singer, J. David, and Melvin Small. "Alliance Aggregation and the Onset of War, 1815-1945." Quantitative International Politics. Edited by J. David Singer. New York: Free Press, 1966.
- Smoker, Paul. "A Time Series Analysis of Sino-Indian Relations."

 Journal of Conflict Resolution, XIII, No. 2 (July, 1969).
- Sullivan, John D. "Quemoy & Matsu: A Systematic Analysis." Mimeo, May, 1964.
- Ta-kung-pao she 大石報社). 人民 升 (Jen-min Shou-ts'e), 1955, 1956, 1963, and 1964.
- Tang, Tsou, and Morton H. Halperin. "Mao Tse-tung's Revolutionary Strategy and Peking's International Behavior." American Political Science Review, LIX, No. 1 (March, 1965), 80-99.
- Tanter, Raymond. "Dimensions of Conflict Behavior Within and Between Nations, 1958-60." Journal of Conflict Resolution, X, No. 1, 1966, 41-64.
- Thompson, Kenneth W. "Toward a Theory of International Politics."
 American Political Science Review .LXIX (September, 1955).
- United Nations Demographic Yearbook, 1956 and 1964.
- <u>United Nations Official Records of the General Assembly, Plenary Meetings, 10th Session and 18th Session.</u> 1956 and 1964.
- United Nations Statistical Yearbook, 1956, 1957, 1964, 1965, and 1966.
- United Nations World Energy Supplies, 1962-1965. New York: 1967.
- Van Atta, Richard and R. J. Rummel. "Testing Field Theory on the 1963 Behavior Space of Nations." The Dimensionality of Nations Project, Research Report No. 43. Honolulu, Hawaii: University of Hawaii, 1970.
- Wall, Charles, and R. J. Rummel. "Missing Data Estimation." The Dimensionality of Nations Project, Research Report No. 20. Honolulu, Hawaii: University of Hawaii, 1969.
- Whitney, Joseph B. R. China: Area, Administration, and Nation Building. Department of Geography, Research Report No. 123. Chicago, Illinois: University of Chicago, 1970.

- Wright, Quincy. The Study of International Relations. New York:
 Appleton-Century-Crofts, 1955.
- Yahuda, Michael B. "China's Nuclear Option." China After the Cultural Revolution: Bulletin of the Atomic Scientists.

 New York: Random House, 1970.
- Yearbook of International Organization, 6th Edition, and 10th Edition.

 Brussells: Union of Internation Associations, 1956 and 1964.
- Yilmaz, Hüseyin. Introduction to the Theory of Relativity and the Principles of Modern Physics. New York: Blaisdell, 1965.
- Zagoria, Donald S. The Sino-Soviet Conflict: 1951-1961. Princeton, N. J.: Princeton University Press, 1962.
- Zaninovich, Martin George. "An Empirical Theory of State Response: The Sino-Soviet Case." Unpublished Ph.D. Dissertation, Stanford University, 1964.
- Zinnes, Dina. "The Expression and Perception of Hostility in Pre-War Crisis: 1914." Quantitative International Politics. Edited by J. David Singer. New York: Free Press, 1967.

APPENDIX I-A

ORIGINAL DATA FOR NATION'S ATTRIBUTE

1955 AND 1963

UNIT, SOURCE AND FOOTNOTES FOR THE DATA 7

Common Footnotes

my estimation based on my own knowledge DON (The Dimensionality of Nations Project) estimation

computer estimation (with MISDAT Program)

my estimation based on M, above. substitution by the data of the year .. e.g. S56 means that the figure is of 1956. R: D: MA: S...

N N	VARIABLE NAME	CODE	UNIT	SOURCE AND FOOTNOTES
7	l population	POPUL	x 10 ⁴ persons	United Nations Yearbook
N	area	AREAT	\times 10 ³ km ²	United Nations Yearbook
m	density	DEWST	persons in 1 km ²	POPUL/AREAT
-1	arable land	ARLND	34	United Nations Yearbook. Footnote for '63: N = estimation by North (North, 1969).
7	energy production	ENPRO	x 10 ⁵ metric tons	UN World Energy Supplies, 1960 for '55 and 1967 for '63. Footnote for '55: R estimates were based on Eckstein (1966) and Doolin and North (1967).
9	steel production	STPRO	x 10 ³ ton	United Nations Yearbook, footnotes for '55 and '63: E = Eckstein (1966).
7	gross national product	GNPTL	x 10 ² million US\$	DON data, footnote for '55: Eckstein estimated 375 for CHN.

(CONTINUED)

APPENDIX I-A

(CONTINUED)

ORIGINAL DATA FOR NATION'S ATTRIBUTE

1955 AND 1963

SOURCE AND FOOTNOTES	DON data	same as ENPRO	UN Statistical Yearbook, footnote for '55: S = S63.	UN Statistical Yearbook, footnote for '55: S = S63.	GIPTL/POPUL	UN Statistical Yearbook, footnote for '55: S = S63.	distance between capitals on $30~\mathrm{cm.}$ globe	Coward, H. R. Military Technology in Develoning Countries. Cambridge. Mass., 1967. Sellers. R. C. The Reference Handbook of the Armed Forces of the World. II. 1967. Footnote for '55: main source was Coward's. SL = Sellers. Footnote for '63: main source was DOW. SL = Sellers, C = Coward.
UNIT	jo.	kg	x 10 ⁻⁵	x 10	ns.	₽ú	ш _О	x 10 ³ persons
CODE	LITRC	ENCON	ТЕГРН	PHYSI	GNPPC	NAGPO	GEODS	303CF
VARIABLE NAME	literacy rate	energy consumption per capita	10 telephone per capita	population per physician	GWP per capita	non-agricultural population	geographical distance GEODS from China	size of armed forces
NO.	æ	6	10	11	12	13	- 1	15

(COMPINED)

APPENDIX I-A

(CONTINUED)

ORIGINAL DATA FOR NATION'S ATTRIBUTE

1955 AND 1963

SOURCE AND FOOTWOTES	main source: Sellers (1967). Footnote for '55: A = Asahi Wenkan, 1956.	main sources: Coward (1967) for '55, and DON data for '63. Footnotes for both years: SL = Sellers.	Don Data.	DON data.	DON data.	DON data.	DON data.	Goldman, Marshall I. Soviet Foreign Aid. New York: Praeger, 1967. For Communist countries, p. 28, Table II-2, for other countries, pp. 204-5, Appendix I.
TIND	number	million US\$	0: Comm. 1: Neut. 2: West.	ratio to POPUL x 10 ⁻⁵	number	number	x 10 ⁵ US\$	x 10 ⁵ US\$
CODE	COMPL	DEFEX	BLOCM	COMST	KILLD	KILLF	USAID	URAID
VARIABLE NAME	<pre>16 number of combat airplanes</pre>	defense expenditure	bloc membership	19 Communist Party membership	killed in domestic violence	killed in foreign violence	US aid	USSR aid
NO.	16	17	18	19	20	ส	22	23

(CONTINUED)

APPENDIX I-A (CONTINUED) ORIGINAL DATA FOR NATION'S ATTRIBUTE

1955 AND 1963

SOURCE AND FOOTWOTES	UN Official Records of the General Assembly, Plenary Meetings. Footnotes for both years: R = the score if the nation had voved.	Worldmark Encyclopedia	DON data. Footnotes for both years: W = Worldmark Encyclopedia.	DON data. Footnotes for both years: W = Worldmark Encyclopedia.	DON Data. Footnotes for both years: W = Worldmark Encyclopedia.	DON data. Footnote for both years: W = Worldmark Encyclopedia.	DON data. Footnote for both years: W = Worldmark Encyclopedia.	UN Demographic Yearbook.
UNIT	0: yes 1: abstention & absence 2: no	<pre>0: colonized 1: no 2: possessed</pre>	₽·¢	ष्टब	ER	8 ∕2.	number	<pre>code (see def. in main text)</pre>
CODE	UNNOT	COLON	CATHL	PROTS	MOSLM	виррн	LANGN	CHINS
VARIABLE NAME	UN voting	colonialism	Roman Catholic	Protestant	Moslem	Buddhist	language	Chinese population
NO.	2it	25	56	2.2	28	59	30	31

(CONTINUED)

APPENDIX I-A

(CONTINUED)

ORIGINAL DATA FOR NATION'S ATTRIBUTE

1955 AND 1963

 $\sum_{\substack{\text{total one of the administration of$ 25.59 2.20 2.20

THE WAS THE WA S SYSTEM OF THE STATE OF THE ST

	28 28	95	73	0	o	0	0	Ġ.	כי	13	æ	7	0	-	0	7	80	0	0	0	0	0	0	0	87	0	0	0	0	.	o •	ų c	c	, C	C	2	36	ec O	•	01	~ (.	93	O	0	0 0	2	Š	
	27 Profes	0	0	~	65	•	7	m's	ا ایما	-	-	c	15	2	•	0	~	0	1	د	13	2.5	2	0	-		95	95	~ ;	7	⊷ (۶ د	n c	۰,	76	0	m	0	.	ın (o c	5 C	0	0	*	0 (90	င့်င	,
	8g 第	0	9	*	23	00	95R	95	93	0	_	0	45	~	06	-	~ 1	100	96R	16	25	-	98	*6	- ;	6	φ.	e į	44	= ;	ri C	0	3	æ	a,	; 	-	0	• ;	* •	- 8	, c) PI	0	-	9	<u>}</u> -	- +	1
	25 001.01	O	0	-	7	6	~	-	-	-	0	0	_	0	-	-	0	-	-	- -1	0	2	-	_	┛,	-	ο.	 (~	7 (' u -	-	-	•		0	0	-	(D (.	,	٥	O	0	0 (۰ د	→ c	,
	24 Unvot	-	80	2	~	1	2	۲,	7	OR	0	0	2	A O	~	0	ru	7	7	2	0	c	7	~		7	2	ur H	~	X i	, r	, ,	۰,	10	č	0	c	2	~	×	٦,	7 OC	. 2	80	2R	9 8	NI (~, =	:
	25 AT 10	91	±	ပ	c	0	0	0	-	139	c	ပ	0	0	0	1414	0	c	0	0	33	0	c	0	0	0	0 (o (t) (1	0 0	-	.	. c	c	4 v	· 	o	0	0 (0 (n (- c	0	11	0	0	0		•
mt.d)	ZZ ZSA ID	20	Ç	62	ä	15	K C	31.7	563	c		380	4 6	-	62	၁	1402	45	53	r	67	S.	•	6 3	663	œ,	. 4	X C (23	2	5 1		4 th	3 -	; c	1122	54	1282	53	*	e (2501	9	O	3150	2364	11	691	667
o) 1-1 110	Z III	c	0	0	0	H42	0	0	c	0	83	0	0	0	c	2385	2385	0	0	c	0	O	0	0	4875	c	0	0	4486	0 (5 6	> 0	.	9	13350	92	0	0	0	c	5228	D C	263	c	0	954	0	0	
133	8	c	، د	4370	O	1134	0	•	15	0	26 B	0	0	01	0	2000	c	966	5 0	555	•	0	0	-	•	ပ	0	0	c	o (÷ (0 5		10161	1672	4117	127	55	0	c	o c	0	c	0	1354	23	0	E
	19 COMEST	c	35.2R	262	4	1004	169	93	171	6069	4.2	54	*	72	265	1759	0	0,4	105	49.	11374	383	0	136	σ	4	0	756	867	7145	120	167	,	5 6	700	86	199	33	4 5	r	200	3121	365	12362	0	235	246	۰;	Š
	# 5	-	٠ د	• ^	۱ ۸	, ~	~	~	7	Ų	_	-	~	7	7	0	~	2	~	~	0	~	~	~	~	~	-	-	~	0	N (٧,	v r	y (4 C	, 	. ~	~	7	-	-	~ (~	C	~	-	-	m (7
	17 18	760	24543	166	386	5	3130	~	399556	254563	2	37.559	1710	6556	63	39540	165559	650	C 1	51557	1000R	lor	23	11	141	~	27.559	100E	25300	106351	16.35R	¥581	٠.	۰ ،	י מינש	6.14	346	6,	92 S C 8	308	11	7337	30.556	2006	120	11559	œ	1 559	4234
	7, 100 1,	•	ى د	, ,	000	20	3C 3E	U	3C.3A	230	10	, 0	10 E	0	70	2209	20:0A	20	0	2	3034	100	50	10	500	c	0	20	10004	200	200	55.5	0 0	.	9 6	700		7.	20A	0	601	400A		90%	157A	0	50	0	0
	15	010	200	1.00		70	1430	12	101	C+1	43555	15569	121557	20	42	35530	\$30556	170	-	230	4430	9	•	53	92	_	239	340	7530	1140	19.00	1373	4555	Λ.	\$ F	0000	24.2556	1310	630	137	503	269.0	600.61	6460	650556	25556	55	4559	20
	14-10E			A 10.00 A	1000114	ALS255	BF1.035	P.31.60.7	F3C7E9	# J	PUE 313	CANDII	CAND12	CEYSIA	CHLC14	CH1315	Ch1213	CCLC17	CG5918	613473	CZ6=Z3	DE1021	EC#122	ECU:123	£65524	EL 5325	ETHUSE 6	F11:027	FR-: 62 8	GMF029	CEOPAG	1 E C D & D	66.175	SE . 1 V 4	7.00	6 6 C C 2 E	180037	144033	PECCHI	[PEG4]	184041	17:342	かないのと	10.04	KGS045	LA0347	1,68348	184049	L87059

A LA FABRAGA

	*	3	0	=	0	0	6	0			2	_			-	6	۰,	<u>د</u>	5 (> (<u>.</u> د	۵,	• ;	D ,	٠.	~ (٠,	.	٥ و	> 0	> 0	,		
	N	1								-							,					•	•									•		•
	r.																																	
	%																																	
	52			-	2	~		-	-	U	-	-	-	0	-	~		~ 1	~	→ .	-	-	→ .	-	~		~	~	~	→ .	E)	0	→.	-
	*		~	<u>د</u>	~	~	~	ဂ	ĕ	~	~	~	~	~	U	~	ĕ		*	0	=	-	~	~	~	0	~	~	~	PI	e 0	*	(>
	ຊ																																	
out'd)	2	USAID	21	92	80	8 0	36	S.	0	1107	53	4	1000	30.8	VHC	396A	c	•	1158	6	8	ZFON	485	1093	16.3M	9	350	^	*	~	c	36 dA	A MO	1434
) 1-1 LIGHT	ส		0	0	C	0	35	0	0	9	0	0	0	0	0	0	0	0	0	0	0	26	0	0	0	13350	4509	E	0	•	327 M	245H	53	•
ş	8	SHE	82	0	0	0	0	0	0	~	0	01	0	•	140	0	0	0	0	0	0	ĘŢ	0	0	69	20	0	0	0	22	23 IM	1998	0	10 3M
	21	Sers:	11	12	233	61	3	233	3610	~	*	124	53	77	5278	ř	3437	C i	11	379	121	528	\$2	0	=	3604	9	80	161	173	3141	:	0	3457
	2	BOM	~	-	~	~	~	~	0	'n	ĸ	~	~	~	9	~	0	-	7	-	-	-	~	~	7	0	7	~	7	~	0	~	~	~
	11	No.	32	90	5 30 R	9	4559	1220	25 S.L	172	1559	3557	33	48	2200	¢10	90	15355	0012	7104	1750	ಌ	7	366	4	1CC07R	4742556	40730	340	103	1508	113558	18RE	5660
	16	8	50	c	240	2-3	9	800A	0	150	c	0	20	9	573	20	200	O	350	4009	SCOP.	6	120	300A	20	00001	2003	2C050A	c	9	6	20	0	500
	15																									•		***						
	200		PEX351	NEPOS2	KTH053	NE4054	A1C355	ACF356	CLTOS7	PAK559	PANJSS	PARCES	PEROFI	PH1262	PCL:063	FCR054	80×08	SAUJéa	ともいれるい	S=0068	SMZ 369	SYACTO	TAI 371	TU#372	UNSC 73	410+50	UNKO15	USADTó	LRASTT	E46N3A	64CN1A	VTSC80	YEMOBI	YUGGE2

		3	PPENDIX I-A ((cost.4)			
IN TIDES	800E	N 14MGH	31 CHINS	22 26 26 26	33 WTRA:	STRAD	35 ITRAD
AFG3G1	•	,	r	U	59	24	8G2W
ALBC02	6	61	c	•	- 4	Đ	900
ARGG03	•	-4	0	-	1240	218	950
AULOAG	C	-	4	~	264R	63	417
AUSOGS	9	-	0	7	1115	194	852
BELOCA	6	7	c	~	3847	192	250
BGL 337	c	4	ဂ	~	145	0	000
g	c	~	c	~	1502	173	158
8UL 129	•	m	e.	0	33	30	417
RU4010	83	۳	.	~	116	07	703
CAPOLL	90	*	•	~	4	23%	E O L
CANO12	ç	.	•	7	8008	23	265
CEVO13	49	7	0	~	340	m	265
CHL014	c	_	c	~	295	٩n	266
SICHHO	97	•	Œ	0	168	~	146
CHT015	2 DR	m	7	-) 10 1	•	000
CGL 017	c	_	0	•	1002	5	908
C05014	0	2	~	7	121	Ö	806
CUF713	c		4	- 4	879	6 3	953
C2E923	c	۲,	c	0	192	\$ 5	857
CENC 21	0		0	~	1656	134	455
50mc 22	C	7	7		178	-	166
ECU023	0	7	0	~	135	c	800
*20a93	c	38	c	-	475	163	745
FLS025	c	~	د	7	147	၁	400
ETH026	c	34 24 24 24 24 24 24 24 24 24 24 24 24 24	0	•	72		٠ د د
FIAC27	r	L1	c	7	868	403	683
FRNC23	0		0	7	1103	320	926
GMED73	0		c	•	191	4 4	772
CECHES	c		0	7	6377	576	946
GRC031	c	۲۰	c	C)	429	64	915
GUAC32	0	7	7		132	0	566
HAICAS	0	ヘ ;	င	7	4		444
7£64J4	c	96	۲.	-	70	Ç)	5.5
FUND 3.5	C	n;	c	0	1.46	er	176
140034	c	118	σ.	~	1681	P.J. F.	046
145017	m (~ ?	۰	(9 6	è	\ P
E CONT	0	# O	s •		200		
180033	ث (۳	5 6	1564	756	5 W	n d
04047	.	٠ ،	n (۷ (2 6	000
I Sect I	0 (∾.	D 6	~ (300	50	2 0
29061	؛ د	-	> 4	w 0	7287	141	076
C & . 4 W	ָרְ ר	- 5	• 6	• ^	-	7.	M 1 7 0
**********		n =	٠ 4	ه د	, ~	2.2	
C + C P C P P	X	-	• 4	•	17.2		007
R435.46	100	-	• •	۰,	2454	1 0	257
	Š	۲ <u>۲</u>	າ c	40	ñ r	11	926
	> 6	¥ ,	þ	• ^	1 T	AMO.	922H
1 6 KO 4 J	-	r r	> c	۰,) E	: X:	0388
COLET	5	•1	>	,	1)

	35 ITAAD																																
	z g	2	40	221	•	0	106	M.	•	Š	O	~	0	63	•	34		13	9 02	122	=	0	961	21	320	874	304	50	•	111	AMC	ANO	9
€.	S. C. C.																																
I-A (esst'd)	2 G	2		~	7	~	7	0	7	~	•	~	~		0	0	0	•	~	~	7	CS63	7	~	•	~	~	7	~1	· 	-	•	0
THEFT	4	3	•	•	M	0	0	0	د	m	•	0	1	0	•	0	•	c	•	c	c	~	0	~	m	m	ب	0	•	•	~	0	0
	2001	7	~		7	•		3	٠	61	~	m	•	~	-	m	-	m		•	4	8 .	m	=======================================	119	-	_	-	-1	38	æ	_	٠
	8	0	SUR	•	c	0	0	92	•	•	c	0	c	0	0	•	•	c	0	0	0	*0	c	0	-	•	c	_	0	50R	SOR	•	0
	MTDE	MEXO51	KEP052	NTHC 53	KENCS4	A1C055	NOR 350	CUT057	PAKOSB	PANCS9	PARC63	PEROFI	PHIDOZ	POLC63	POR064	S93KNY	SAUDES	SPNOAT	Sathors	94Z34S	SYR570	TA1071	TUR.372	UNS373	USAC74	UNKO 75	97CA2U	URACTT	VENO75	VTN079	VISSBO	18CM3A	YUC082

	13 14 NAGEO CECUS																																						
	12 3 GNPPC NA																																						
	11 Hitsi	3200) P	e Gr	\$ 1	950	014	67	0000	95	94	167	1 20	240	220	(7 T	•-4 i U,	6.79R	260) () () () () ()	3295	0 6 1	2003	67	7 C	1160	10038		4160	346	4 () (t .a	61	C	206	6765	250	000) (
	10 H.21	5.3	341	23373	12079	14632 528	1573	27.45	n o	35127	397	28.59	1137	2196	1492	\$ 00 E	244.50	828	915	7.4.4	82	16057	9175	117.51	5. I 7	**	420	r a	1631	720	773	C 1 2 5	60.30	64.78	1346	636	6.36	G !	013
	e e	62	323	41.74 41.76	1752	191	356	1960	or P	6449	114	1103	573	534	1;;	664	3714	117	176	152		2070	6376	£123	166	4 C	165	25.04	111	453	197	25.32	1564	1531	260	12218	310	e :	110
(P.1	LITRO	-	2	* 3	ф. 67	9 F	14	6.6	75.	10	62	67	- e:	55	16	- 6	T. C.	75	1 80	ر د و	, ~ı	æ .	c c	T)	ر د د د	12	2	g 1	99	51	5.6	no C Pro	3 r.	3.4	69	3.6	84	17	
X I-4 (oo	CHPT. LIT	11	I,	129	72	140	152	67	17	392	15	36	20 C	7	ĸ	28MA	76	0	٠,	<u>م</u> م	۰ ۰	*	992	918	4 - 0 c	4	•	200	- T	9	9.0	27	619	265	4	04H	31	~	0 6
APPEND	6 ST/NO	ž	ĕ,	36	295	753	291	9	ğ. (7 × ×	a R	69	20.05	21	OR R	20MA	36	S,	ě	28.4A	Ş	31	91/1	3160	202	: x	C S	2374	3CMA	20.4A	70	4 F S	1016	3150	OR OR	122	1,	8 6	Š
		•																																					
	5 00 10 10 10 10 10 10 10 10 10 10 10 10								œ (150			0 92		0	ر مه	1 0	0	01	0 P	7681	E] (o o	0	202	335							140	<u>e</u>	Ç (
		-	11	230	103	215	109	123		1111	0	99		154			200													246	746	5 ~	194	643	0				
	2 Z	224	17 11	7 533 223	20 103	29 215	60T	41 123	23	7111	23 0	TO STATE OF THE ST	25.	4 154	12	24H	92 9	WE 2	=	E 26	, 60	ec (P 4	9 47 1 1 Pi	P (Q (0)	_	Q (151	13 967	26 746	67 61	51 194	15 643	12 0	278	2.1	4 ;	> f
	orana state	1 422 FZ	61 17 11	1 23.7	e6 20 103	364 29 215 3 114 4	OT WILL 6	73 41 123	35 52	2 4 1117	162 23 0	11 mm 66	NO1 21	13 4 154	27 12	(3) 24H	59 651	263	11 21	28 3	13 8	13	73	9E 9EZ	66 60 60 60 60 60 60 60 60 60 60 60 60 6	02 63 1 09 I	18	108	FST 757	13 10 967	15 26 746	57 61 51	158 51	259 15 643	29 12 0	39 278	273 21	2	21.7

202 502 11750 10.00 33.62 33.62 10.64 MATORS
MEXICS
ME

	26 20 20 20 20 20 20 20 20 20 20 20 20 20	000	73H	6	D (0 0		•	Č		~	0	_	0	~	2	0	•	E' (> c	-	•	D	, 0	· C·	Ü	ø	Ç	D	~ <	,	> <) c	`=	Ş	6	60	0	æ	0	٥;	, c	> 0		* C	0	\$
	e e e e e e e e e e e e e e e e e e e	0	0	e i	¥ .	Ø 15	٦,	o de		;	. 0	508	~	•	0	7. 7.	≥.	# f	¥ 9	۲ د د	÷	V C	, ⊶	1 000	yr. O	5 6	~	E .	ž.	D (n c	•	36.	C.	en	0	0	v		د (۰ د	- (2		0	ž	0
	2 2 2 3	c	\$	66	12	o o		6	,	4 ,=	•	. £3	•	6	-	~	t i	e d	* •	ς,	٠,	Ç. 6	ļ	· ec		c	83	11	4	- (÷ (. F4		٥	^	\$	ru į	00°	> *	٦ -	• ^	.	· ;		•
	25 00101	, ~ 3		-4	ry i	-	.		• -		۰.	, ,		-	-		⊶ (,	··· (·• (7.	٠ -	F-	•		-	~	-		,, es		• -	•	•	-	-4			، فعم	-	٠.,	-	٠.	• C	, 🕶		•
	uror Grot	0	0	~	~		v (~ r	vc	9 (• c		0	~	e.	7	~	~3 (n	0 (D (~ (v c	^	1,	0	N	80	2 5	~ '	~ -	۰,	, c	. c	· C	~	0	C)	, ,	r1 1	~ [\ c	ć a	٠.	, ,	~	~
	23 MATO	239	8	80	റ	c	ь	ž 6	707	5	1364		` 6 2	Š	971	c	æ i	č	516	501	D	٠,	ě	700	Š	0	0	114	0	200	x d	Š	174		20	Vin0	529	0	0	0 (D (137	•	1134	æ	8	ĕ
	ZZ ZZ KDLF USAD																																														
•) 1-1 IId																																															
	200	C	c	36	0	0	O (c (•	9	007) r	0	•	200	c	2090	0	200	0	0	30	.	> ~	100	0	0	0	0	0	~ ;	95	F C	7	, ;	584	1655	6	0	•	•	; (0	200	971	· c	• •
	2	j°	101	207	ż	468	£ .	165	2	7920	7	` ~	: ;	304	2647	•	69	•	387	11641	101	6	3 •	, ,	, C		543	1001	ر ک	236	54	ř		7.	1 100	•	218	0	96	2665	119	0	7011	D (200	:	0
	16	-	• c	~	~	~	~	~	~ <	۰ د		۰ ۳	٧ ~	~	0	~	7	~	0	0	~	~	۰.	- ^	v -	-	۰ ~	0	~	~	~ (٠,	v c	۔ ر	4 -	• ~	,		-	~	~	- (0	٧.		-	
	17	1 :	ì	256	913	101	244	æ į	316	* :	701		5	.	68.30	2 18	119	C I	5 20	14 20 SL	213	*	7	62	• 6	: =	3767	1245	4362	531	Φ (٠ ,		2 6		12.00	139	2	162	1283	3	15	2.2	153	`	3 ^	1.
	92	400	2	140	30.6	13	374	m ;	200	8 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	v •	•	7 0	3.5	2250	395	2	c	136	φ. (,	170	1.4	200	e r	٦ ٢		1627	100	1153	325	22	• •	C 4	6 6 6	, c	, e	10.2	e F	257	609	512	~ ;	470	193	n 6		•
	25	2 C	2 4	115	4	54	101	C	5	120	C 10		157	4.3	2621	543	32	-1	65	523	1:0	1.1	• ;	٠ د د	• • •	, ,	1 C4	523	£ [4	145	12	v ;	֓֞֝֝֓֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֓֡֓֡֓֡֓֡֓		,	F (**		1356	253	.33	542	53	369	5.31	<u>:</u> :	24	•
	EL TJOSES	AECHT	2004	A SCOOL A	ALL 30+	ALSCOS	BEL 325	PCL927	F 1 V 2	6 7 7 7 8	610,55	1000	C E V 23 3	10.10	510.40	CF1215	ככריוז	600000	612-613	623373	12:133	12,25	EC. 123	FCP224	FLS325	4.6.4.4	F	0 6 10 10 20	544533	1+25/59	644332	HAT-333		40.00		10 1 N L 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18-14	172062	130763	440656	をもついいま	4.5.D¥	19:41	4	18VC53

	R		. 3	0	0	0	0	0	89	0	ဂ	c	•	o	c	0	95	0	0	0	4	•	6	-	-	-	0	0	C	0	C į	S	77
	2	ror.		4.2R	74R	4	60	0	ဝ	3	~		cı		0	•	C (0	9.50 1	556	0	င	0	27	86555	£ ;	33	=	-	•	0	۰ ۵	
	2	1	C	9	<u>*</u>	\$	0	c	c	2	43	96	2	16	26	2	C !	001		9	~	0	0	•	•	•	23	8 2	6	•	0	0 (32
	82			~	~	,-d	-4		-1	~		-		-	~	-	(~		→ .	~	-	-	~		~	~			r4	0	⊶ .	-
	ষ	DIVOT	0	-	~	2	O	0	c	~	2	~	~	ဂ		0	-	2	0	¥ ,	c	~	~	~	0	c ·	~	~	~	5	2	n (0
		CIVAD																															
£.6)	22	GIV50	39	0	c	3.5	0	o	1861	e e	9	5ء	33	0	o	0	o (0	0	0 (~	174	1308	0	0	o ·	c	6	331	0	1433	26	-
	ដ	j.	• •	0	0	0	0	0		0	0	0	0	0	0	0	30	0	0	•	m	•	0	0	~	0	7	0	0	0	m	0	0
8																																	
1	2	1	, 0	0	•	~	•	c	133	0	~	2	•	0	0	0	0	•	0	•	21	0	28	‡	212	0	•	0	145	0	36010	1003	o
	2		. 02	0	•	~	•	c	133	0	~	2	0	•	0	0									212	•	•	0	145	•	36010	1003	o
1944Y	29 20	1	41	0	30	2	109	ų 15 1	3 133	0	209 2	73 10	0	0 9099	0 22	6592 0	0	ş	593	5	2	OMA	m	٠	4894 212	63	. NO	377 0	369 145	3371 0	130 36010	0 1003	o
	16 19 20	Care course	50 15	2 100	0 % 2	2 0 2	0 601 2	0 159 0	E1 E 2	0 0 2	2 500 2	2 73 10	0 4 7	0 4806 0	0 22 2	0 6592 0	0	1 16	1 263	100	200	2 OMA	2	-	0 4894 212	2 63 0	2 0R 3	2 377 0	2 369 145	1 3371 0	2 130 36010	1 0 1003	C 0645 1
	17 18 19 20	Hoos cours tills	2 15 20 20 20 20 20 20 20 20 20 20 20 20 20	641 2 100 0	74 2 39 0	2 0 2 8	163 2 109 0	U 159 0 52	159 2 3 133	0 0 2 0	12 2 209 2	73 2 73 10	٥ 1 2 1	4115 0 4806 0	0 22 2 051	665 0 6592 0	113 1 0	363 1 16	113 1 263	355 1 104	100 1 001	77 2 OMÁ	264 2 3	173 1	15444 0 4894 212	1369 2 63 0	63424 2 OR 3	17 2 377 0	135 2 369 145	300 1 3371 0	267 2 130 36010	10 0 1003	1 5430 5
	16 17 18 19 20	DEFET BLOGS COMES TILLD	5 19 1 50	287 641 2 100 0	20 74 2 39 0	2 0 2 8 52	220 163 2 109 0	0 15 + 0 52 9 1	181 E 2 661 5VI	0 0 7 0 0	0 12 2 209 2	69 73 2 73 10	0 2 2 17	630 4175 0 4606 0	156 150 2 22 0	272 665 0 6592 0	18 113 1 0	353 369 1 16	1050 710 1 263	344 355 1 104	67 100 1 60	120 77 2 OMK	725 284 2 3	15 179 1 67	12330 15444 0 4894 212	1266 1369 2 63 0	8250 53424 2 OR 3	7 17 2 377 0	83 135 2 369 145	123 300 1 3371 0	126 267 2 130 36010	12 10 1 0 1003	\$20555 403 1 5430 O

	*	*	TRAD	ě	•
*******	SHIPS			7017	ITEAD
~~~~~	c		<b>3</b> 6	98	904
			=	103%A	524H
			1719	11	960
	•	~	3913	319	456
~ * ~ ~			2010	404	836
4 (1 )			7775	213	973
~ ~			166	-	266
			2049	171	422
			99	1112	Ce
_			261	75	177
			198	32	171
			10743	326	575
			390	6	161
			895	17	196
			831	1611	410
			533	0	1500
			769	Φ	989
			196	0	966
			221	5068	ME69
			5.27	2964	151
0			2784	171	675
4	•		300	: -	166
			251		966
			102	306	633
				; -	700
				• 1	570
			1400	503	736
			8643	. 6	870
			146	1785	127
			1 7046	1002	330
			2.2	127	242
. ^			263	0	1900
			2	0	306
			134	~	186
_			3-3-3	1617	195
			2767	425	P C 4
			146	c	1001
3			911	lo	909
_			793	92	912
			1174	16	950
			746	23	970
			75.80	764	£ (1) (1)
			7.136	523	931
			74	15	A35
١ -			36564	1164	O.E.
			287	c	1202
			36	ď	995
			765	11	260
		ı C	7	C	1000
		•	6,23	-	276

	×																																
	k	1	0	349	•	o	104	1COMA	94	0	0	01	ပ	2363	=	1526	c	108	CIE	273	18	•	98	72	7445	465	235	<b>61</b>	٠	SOMA	•	0	+24
	×	1492	6	615.	1369	134	1872	AP:0	686	1 30	35	490	1269	342	620	70%	999	1422	2105	4422	291	697	786	23-39	2144	12460	23421	223	2430	6	289	•	982
	X S																																
APPENDIX I.	# E	7	o	د	~	0	c	•	c	m	0	0	•	c	c	c	0	c	•	0	•	•	c	•	•	4	•	O	0	•	'n	ò	0
	8	~	M		~	m	-	-	•	~	N	•	•	~		m	_	m		•	4	7	m	11	1	-		_	_	m	m		-
	8	,	SOR	C.	ۍ	0	0	88	-	c	c	c	c	0	0	0	c	0	c	0	•	46	0	0	c	c	n	c	0	50R	50R	<b>SO</b>	æ
	ATTORS	FREST	FP252	THU53	756	10353	08356	UT057	3K059	47:353	A4 36 9	195.25	HI 252	01.363	03364	UNCOS	AU366	PNOST	WOCA &	450A9	VRO70	AICTL	175 FU	:5373	\$15cS	NK:75	54373	1400AP	ENOTA	TRC79	T\$380	ENC 81	UC 382

APPENDIX I-B

# ORIGINAL DATA FOR CHINA'S FOREIGN BEHAVIOR 1955 AND 1963

1) UNIT, SOURCE AND FOOTNOTES FOR THE DATA

SOURCE AND FOOTNOTES	Eckstein (1966), Table 4-1, B-1, and B-3. Figures were cross-checked against IMF & IBRD. Direction of International Trade, Annual Issues.	same as above.	匪情车靴、,1967, 几沙政经理客编、中国	政治統治 (1964. Footnote for '55: E = Eckstein.	太公義刘,人民乡州 and Doolin and North (1967).	•	大公教际刊 ,人民少邢.	世界知識洋案 , and Yearbook of International Organizations.	人民日報	人民田叛	(CONTINUED)
UNIT	x 10 ⁵ US\$	x 10 ⁵ US\$	x 10 ⁵ US\$		index	index	number	number	frequency	frequency	
CODE	EXPOR	IMPOR	ECAID		DIPFP	DIPTP	TREAT	CONGO	POFVT	POFVF	
VARIABLE NAME	export	import	economic aid		diplomat from Peking	diplomat to Peking	treaties	co-membership in NGO	official political visit to object	official political visit from object	
NO.	н	8	m		#	2	9	7	œ	6	

APPENDIX I-B
(CONTINUED)
ORIGINAL DATA FOR CHIMA'S FOREIGN BEHAVIOR
1955 AND 1963

SOURCE AND FOOTNOTES	人民略	人民日叛	人民日報、	人民日報	人民电报	人民日報	人民田城	人民用報
UNIT	frequency	frequency	frequency	frequency	frequency	index (see def. in main text)	index	index
CODE	PNOVT	ECOVT	ECOVF	CULVT	CULVF	CONCN	POCOM	NECOM
VARIABLE	10 non-official political visit	economic visit to object	economic visit from object	cultural visit to object	cultural visit from object	concern	16 positive communication	negative communication
NO.	10	Ħ	77	13	17	15	16	17

	#	ATB	۰ ج	- د	• c	. c	ı (C)	c	o	15	m	C	0	o	0	c	0	Ci	0	•	~	<b>.</b>	0 (	m e	ه د	، ن	٧.	• :	7 6	<b>v</b> C	c	c	0	ē.	13	0 (	0 0	<b>.</b>	٥ د	ے ن	<u>-</u>		4	c	c	ı	0	c	
	ti	T C	> ^	'ı C	; C	c	) (v	10	٠,	O	m	C	0	6	0	C)	c	0	c	•		0	r) (	(	0 0	۰,	<b>-</b>	-1 -	4 C	<b>o</b> c	· C	6	c	-	2	ry (	י כ		٠ .	> -	- 6	, c	) <b></b>	• 0	0	0	0	0	
	2	1400	ى د	oc	) c		· –	ı c	c		'n	0	c		o	c	c	0	c	-	0	0	0	<b>.</b> → (	0 (	ი,	(	o •	<b>-</b>	<b>.</b>	o c	· C	0	~	0	ry.	ገ (	0.6	> -	<b>-</b> c	o o	• 6	, ~	• ∩	0	0	0	0	
	ជ	ECOVT.	÷ 6		• c	c	0	c	ن د		2	c	0	U	0	O	O	ပ	0	0	0	0	0	0 1	، ب	ο.	→ .	٠, ٠	·	: <	•	· C	· c	15	O	۰	0 (	ى د	<b>.</b>	<b>&gt; c</b>	م د	v c		o 0	i C	6	O	0	
	2	LAORI	۰ د	<b>-</b> •	4 6	v c	» «	- ۱		• -	• 65	· c		0	~	0	2	0	o	•	0	c	ø	0	0	c (	0	м, ,	• (	<b>-</b>	> c		. 73	-	m	6	~ .	<b>-</b> - 4	<b>5</b>	۰,	านู	<b>.</b>	v -	- 0	. 0	, (41		0	
<del>Q</del>	•	101	<b>-</b>	> 6	<b>.</b>	.· c	<b>.</b>	· c	۰ د	•	<b>,</b> –	. c	. 0	0	0	0	c	0	•	-	O	0	0	<b>C</b> (	0	0	Ų (	ν.	<b>-</b> - (	2 (		c	. 0	G	-	er.	0 (	<b>ə</b> (	<b>-</b>		s r	4 5	<b>5</b> C		÷ <b>C</b> !	e (:	a	o	
PFKDIX I-B (oat'd)	•																																																
AFFERDIX	2		* :	Ξ:	:	: :	<u> </u>	2 -	21		9 6	• •	٦ ع	14	2	· "	-	•	10	19	15	'n	12	15	'n	•	14	91	51	£1:	21	2 •	•	92	51	2	14	12	æ (	12	<u> </u>	· ·		1	o •	4 <u>4</u>	-	· c	ı
	9	TALAT	0	~ <	> <	5 6	•	•	<b>o</b> c	•		۱ د	<b>.</b>	m	•			0	•	*	0	c	0	*	0	0	-	0	~	0	0 (	> <b>c</b>	<b>,</b> c	, pr	-	~	o	0	0	<b>c</b> (	0	• 0	> 4	• <	· c	•	• 0		,
	6	i i	<b>•</b>	=	> <	> <	<b>5</b> C	•	<b>.</b>		2 =	3 9	<b>&gt;</b> c	·					•	51	12	0	0	0	0	0	*	ဝ	12	e ·	0 (	> <	<b>)</b> (	15	52	12	¢.	۰	0	•	0	9 6	2	<u>.</u>	) <b>c</b>	o <b>c</b>	c	c	,
	4		2	= (	<b>-</b>	> 0	<b>.</b>	ى د	ه د	, r	. <u>.</u>	3 0	<b>)</b> c	'n	•	• 6	đ	•	0	15	15	0	0	0	0	0	14	0	5	0	0 €	, ,	) C	<u>.</u>	15	15	0	U .	0	ır ·	0	U O	ي د	<u>,</u>	<b>.</b>		<b>)</b> (	<b>,</b> c	•
	•		0 }	<b>4</b> 0	> 0	> 0	> <	> <		<b>.</b>	o c	113664	00521	, 0		· c	: 0			0	•	0	c	47556	0	0	c	o	c.	0	0 (	÷ 6	. c	75.556	0	112556	o	0	c.	0	c.	0 (	2 6	7.0E	5 6	o c	o 6	· c	,
	~	HERE	œ ·	0 9	<u> </u>	5.	9 6	e c	5 4	•	125	276	9 0	255				, 0 8	8	576	-	ř	0	542	3.C	c	125	72	4:1	242	e i	Š	9 6	36.5	161	62	ŗ	o	0	•	51	285	0	F 2 3 4	ž ;	, c	S 6	Š c	,
PATA	4	TO T	440	<b>1</b> 3	٠,	7.		r 4	γ. 5 c		î î	1	י סר	35.		<u> </u>	: -	**		66.7	~	, and	č	10	96	0	33	111	467	431	(	ž Č d	3 6	200	76	60	c	n	Ö	O	33	76.3	٥	2803	x 2	Ē, r	, i	k Dic	>
2) 1955 DATA	CBJECT	LTICKS	FCC:1	2-5-14	£ 30 3 3 4	AUC JUA	200200	פנולונים		0000	20000	010101	110,47	FEV'13	41017	10110	2100	FICAL	O (CAN)	C7522	CEN-021	220a53	ECU023	FGP-024	ELS025	FTHG25	F 14627	FR1223	C#£ 353	CE0##9	640031	560803	5 6 7 T B L	かいとうとは	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	185331	14.034	6507 #1	148743	ISc041	174042	342043	440100	はないこと	K 6 5 5 4 5	190051	(F3)43	5 d C and	10101

	7	COL TO	0	0	0	E (	0	<b>-</b> 4	m (	0	۰ د	0 (	0 (	٥ (	='	<b>5</b>	•	0 (	٠.	<b>-</b>	٠ (	÷ (	•	9	• ;	<u>.</u>	۰,	٠,	- (	•	• «	<b>&gt;</b> c	•	•
	ដ	מוא	۰ ت	0		0 (	0	0	•	<b>m</b>	0	0	o •	0	m (	0	~	~ (	0	g: •	- 0	<b>5</b> 1	· ·	n <b>(</b>	> (		→ 6	٠,	÷ •	۰ د	→ <	-	<b>&gt;</b> ~	•
	ជ	ECCVE	<b>c</b>	¢	a	0	0	0	0	e ·	0	0	0	0	0	0	<b>P</b> 1 (	0	0	→ (	٥ (	9 (	٥ د	0 (	. و	• •	<b>~</b> (	<b>.</b>	٥ (	<b>o</b> (	۰ ۵	o •	<b>0</b>	•
	ដ	ECONT	O ·	0	0	0	0	ö	0	O	0	0	O	0	0	0	ST.	0	0	0	<b>D</b> (	ပ (	٥ (	٥ (	<b>5</b> (	~ (	5 (	<b>.</b>	<b>.</b>	0 (	<b>.</b>	•	o -	-
	2	THOM	~	0	·	m	0	0	~	-	0	c .	0	0	c.	0		0	~	~	0 (	7	s (	۰ د	<b>.</b>	· •	•	<b>c</b> •	<b></b> (	<b>.</b>	•	0	۰ د	•
																																	0	
(P.3M	•	FCF	C.	-	0	0	0	ဂ	6	0	o	c ·	c	•	~	•		0	9	0	c	Ç. (	0	0	<b>o</b>	0	<b>D</b> (	•	0	0	0	0	0	•
) f-I ym	7		15	•	12	•	•	12	13	2	•	=	13	~	5	11	67	<b>~</b> :	121	13	2	13	s	11	13	61	2	2	2	15	12	-	0	•
	9	1121	0	0	•	0	0	0	C1	0	c	•	•	0	*	0	•	0	0	Ġ	0	-	•	•	0	~	0	0	0	•	•	0	0	•
	~	DIPTE	•	'n	==	0	c	2	21	c	•	<b>±</b>	0	0	53	0	2	•	0	2	0	0	•	0	0	16	=	•	•	0	<b>a</b>	0	•	2
	7	DIE	0	2	2	Ü	0	2	51	0	0	<b>:</b>	0	0	15	0	15	0	0	51	0	0	0	0	0	<b>1</b> 0	=	0	0	0	=	0	0	2
	•	ECAID	c	42556	0	•	•	c	100556	•	m	•	0	0	0	•	0	•	0	0	0	Ç	c	•	0	O	0	•	n	0	5.0CE	0	0	•
	•	ADDIT!	0	3	53	•	a.C.	23556	31.54	317	<b>~</b>	80	n	80	350	c	69	e.	Ċ	19	237	~	C	0	12	1490	222	2	c	0	13388	0	ő	44556
	-	2002	C	K	76	•	ě	8	2547	•	æ	90	fì	ř.	354	-	143	8	Ü	<b>*</b>	149	~1	c	c	•	6430	325	~	0	c	11364	35	ሌ የ	38256
	OBJECT	MATICAS	TSUX34	NE7352	NTH053	<b>VE4054</b>	NICCSS	ACAC 56	CUTOS7	PAKESS	PANJST	PA=369	152030	541 36 Z	P21.363	PJ436*	RUM165	SAU.766	SPA:567	SADDA3	£902#S	SYR373	141271	10201	L15073	US4074	27CX7U	US1076	UP 2377	VE":379	610XIA	VTSUBO	YE# 331	***********

	17 MEGGAR	0 (	p <b>c</b>	, c	c	O	c e	m c	<b>5</b> 6	o d	•	0	• •	0	0	C	0	01	0 :	1	ဂ	ည (	<b>.</b>	ž (	176	•	•	14	၀	0												•		
	16 P000	<b>U</b> (	<b>.</b>	0	0	4	54	m (	9 0	<b>-</b>	0	24	c	13	0	o	_	0	~ (	0	0	6	353	۶,		2 (	138	0	7	5.2														
(P.:	15		23	. 🍽	7	10	81	15.	⊶ (	<b>5</b> (	3 <u>C</u>	171	-	123	20	4	23	2.5	57	21	۲3	0	1140	717	296	y 0	304	4.7	-4	154														
PPENDIX I-B (cont'd)	CBJECT	FEX.051	NEPOS 2	NEWO 54	ATC055	NOF-055	CUTOS	PAKTS	PARCES.	PANGO	PHIDAZ	POI 063	PCHO64	RUM065	SAHOGO	SPANET	Sw0063	S#7.059	SARCTO	TAICT	108072	UNS073	LSP074	UNKE IN	USADYA	A PONTY	O LONEA	VISOND	VEMORI	VUGOR2														
APPENDI	17 MECON	0	0	r c	0	0	c	0	o	0	۰۰	٠.	0	49	٥	O	0	o	0	0	0	0	0	0	ָרָם י	٥	o ;	, c	0	r	0	0 *	۹ ۱	4	0	0	Ċ.	٠,	•	· c	33.	c ·	0 (	0
	16 <b>70</b> 00	æ	23	<b>-</b> c	o 0	0	٥	0	7.1	31	0 6	ייו כ	n co	0	0	0	ပ	<b>3</b> C	c	0	0	01	0	o j	17	9 9	101 101	10	c	0	0		9	0	0	0	<b>O</b> 1	m (	2 0	2 %	30	0	0 (	<b>-</b>
	15 CONCE	56	1:	2 5	) (C	31	E	2	83	162	30		12	18	-	01	O	203	11	c	0	96	~	c	54	P	, t.	۳ آ	0	¢	ن	201	050	41	ır.	'n	æ į	64	20.2	6 6	, r.	611	Ē	o <b>o</b>
	CBJECT	AFG001	ALPOF 2	ALL COA	AUSC.5	BEL 706	POL 207	ERAJO3	BUL 639	BUR010	CAMCII	21.00	410	CHT016	C0L917	610800	CUACI 9	CZE323	DEMO21	220,00	FCU023	EGPOZ4	FLS025	ETH225	F11027	FR*1029	CMED 3	Garna 3	CUA0 32 .	FAID33	PC#34	HC1035	10.5047	18:013	PROCES	1RE040	150651	174042	125043	104044	KES046	LA0347	LESC43	L8V050

3) 1963 DATA					Ę	•) d-I XIOOLA	ecat'd)						
OBJECT 1	2 274708	ECATE	7 DITE	~ E	9	2000	• E	600	9	11	1202	er Fig	ar Br
		٥	91	11	•	157	0	^	-	c	c	c	•
ALa:12 453		4 10E	61	2	•	11		-	•	-	m	11	• ±
<b>m</b>		o	0	0	0	37	0	c	c	c	0	0	*
		0	0	0	0	37	0	0	~	0	0	0	
ALS 355 31		n (	٥ د	0	<b>0</b> 6	::	D (	9 (	۰.	0 0	۰.	۰.	0 1
٠.		<b>.</b>	<b>5</b> C	÷ 6	<b>,</b> c	- 0	<b>.</b> c	• •	٥ ٥	e <b>c</b>	<b>-</b> - ⊂	~ ⊂	۰ ۳
F		۰ د	, c	<b>.</b>	• •	7.	° c	<b>.</b>	<b>4</b> 0	۰ د	<b>o c</b>	<b>&gt;</b> •	۹ د
		) C	23,	23	•	96	. 0	•	• 61	• 0	: N	, c	-
_		2	E	52	~	22	~	0	-	~	0		. ~
_		53	15	15	*	•	-	_	~		_		•
~		0	0	0	•	36	•	0	_	O	0	0	0
•		<b>3</b>	<b>16</b>	9	•	62	0	<b>~</b> ! ;	<b>.</b>	U	~		_
נרנוני		0 (	0 (	0 (	0 0	8.	o ʻ	0 (	in (	<b>0</b> (	0	(	~
•		<b>o</b> (	5 (	٥ (	> 0	71	<b>5</b> (	ถ.	۰ د	<b>o</b> (	9 (	0 (	٠,
		0 (	0 (	0 (	0 (	88	c (	- •	<b></b> (	0 (	ဂ	o (	0
		D 9	9	<b>-</b> 5	5 6		<b>&gt;</b> -	<b>-</b>	<u>ء</u> د	۰.	۰ د	• •	9
		3 9	3 5	<b>3.</b> F	. 6	<b>;</b>	ء د	. c	3 -	<b>-</b> c	• •	- M	2 0
		<b>&gt;</b> c	SK	3 %	v C	?	<b>,</b> c		· c	• •	<b>•</b> •	<b>,</b> c	•
		•	90	}0	0	12	•	0	0	0		• •	0
		c	0	0	0	<b>52</b>	0	0	-	0	0	0	0
		•	11	11	•	53	<b>~</b>	<b>-</b>	-	-	0	N	~
		0	0 (	0 (	0 (	<u>*</u>	0 (	0 (	0 0	0 (	0 (	0 (	0 -
		0 (	9	ء ڊ	<b>&gt;</b> f	25	<b>&gt;</b>	<b>&gt;</b> c	> <	<b>-</b>	<b>&gt;</b> ^	9 (	٠.
82 17CV14		၁ င	70	30	v c	5	•	<b>)</b> o	<b>-</b>	- c	٧,	<b>.</b>	
		6	23	2	'n	76	) gad	•	· M	• •	i ~	-	•
		0	•	•	•	Ç	o	0	•	O	0	-	0
		•	U	0	•	2,	n	O	•	0	c	0	1
		0	0	0	0	2	ė,	o e	(	<b>O</b> (	0	<b>C</b> (	6
_		۰ ،	0 (	0 (	0 (	61:	P (	0 (	0 0	<b>5</b> (	0 (		0 (
HC.N.36 38		۲ -	o į	<b>•</b> ;	<b>)</b> (	2 3	> 0	<b>&gt;</b> c	> -	<b>&gt;</b> (	<b>&gt;</b> c	•	۰ د
		űe	C K	SE	٥ د	0	<b>o</b> a	: 0	۰.	<b>.</b> ()	o <b>c</b>	, c	
185537 4235	_	190	E.	2	~	52	, <b>(</b> 1)	•	\$2	0	m	91	27
		•	•	0	0	97	0	0	0	0	0	0	6
		<b>C</b>	15	2	<b>C</b> (	22	o ·	0	0	ပ (	0	0 (	و بند
		0	91	۰ د	0 (	?;	<b>5</b> (	<b>5</b> (	<b>D</b> (	<b>5</b> (	o (	<b>D</b> (	0 (
		o (	n (	^ <	<b>0</b> 6	£ \$	ပ (	<b>o</b> (	n <b>c</b>	<b>o</b> c	<b>.</b>	<b>.</b>	<b>-</b>
114542 176		<b>&gt; c</b>	<b>.</b>	•	<u> </u>	7	<b>,</b>	<b>&gt;</b> c	, <b>3</b>	2 14	•	<b>.</b>	• \$
			0	c	;0			Ö	0	. 0	0	•	-
		263	23	ຊ	•	<b>92</b>	-	42	*	m	2	11	31
		೧	٥	0	0	<b>5</b> 6	•	0	c	•	•	0	•
1		136	=	=	N	• (	0	en «	<b>,</b>	Ç	0	0	<b>,</b>
LENG48 0		0 (	0 (	<b>D</b> (	ÞĢ	2	<b>D C</b>	D (	<b>&gt;</b> <	<b>D</b> (	<b>o</b> (	<b>o</b>	<b>D</b>
LBKG49 CR		<b>.</b>	<b>&gt;</b> C	<b>&gt;</b> C	) C	. 2	<b>&gt;</b> C	<b>&gt;</b> C	> (C	<b>&gt;</b> C	<b>&gt;</b> c	<b>,</b> c	<b>&gt;</b> C
LATES 5		>	>	>	>	:	,	>	>		>	>	>

					7	PENDIX I-B	-B (cont'd)						
CBJECT 1		,	7	5	9	4	8 9	6	10 PMGWT	EGOVT	12 E00VF	13 CELT	AL COLOR
PERCET BETTER		0	o			35		c	2	o	-	p4 (	m.
		\$2	18			01	c	، بسو	m (	<b>o</b> (	۰.	<b></b> 1 -	۰ «
		c	18			75	0	0	ا ٺ	~ 0	<b>-</b>	٠, د	۰,
		•	0			92	c ·	c ·	en e	<b>5</b> (	٠, د	> <	۸ (
		0	0			14	o	0	<b>.</b>	) ن	<b>&gt;</b> (		> 0
		c	-			32	0	0	C	Б,	0 (	9	٠,٠
		061	23			21	0	c	7	⊶ ,	7	7 1	•
		0	0			28	c	2	4	2	4 (	ın ı	c
		c	0			20	0	C.	0	0 (	ه د	0	<b>5</b> 6
		0	22			8.	C	c	~	۰ ن	o (		> 0
		0	0			62	o	0	-	0	<b>D</b> (	0	ه د
		0	0			54	ဂ	0	0	¢ (	۰.	ę, <b>,</b>	٠,
		0	23			77	0	0	7	י כז	→,	<b>c</b> (	• (
		0	ن			33	0	0	0	، ب	c (	۰,	٠,
		c	23			39	c ·	<b>C</b> ) (	~	<b>-</b> (	~ <	٥.	<b>~</b> <
		0	ဂ			~	c. (	<b>D</b> (	င	0		<b>-</b> - <	ه د
		c	0			36	c ·	0 (	، ء	<b>&gt;</b> (	۰.		> <
		0	23			98	-	0 (	٥,	۰ د	- «	<b>.</b>	• 0
		0	•			42	0	0 (	<b>D</b> (	<b></b> (	۰.	o (	o #
		82E	11			17	c ·	0 (	÷ (	5) (	(	٠ (	۔ د
		c	0			81	c (	c (	e (	ه ر	<b>)</b> (	> 0	- د
		0	0			82	c (	0 (	c (	<b>\$</b> 6		: <	۰ د
		0	Đ			6		۰ د	<b>V</b> 6	ء د		, ,	• =
4		0	<b>5</b> *			5.	<b>-</b>	<b>.</b>	ъ.	٠, .	<b>&gt;</b> •	o -	4
		0	6			44	o (	• ن	<b>-</b> , -	<b>-</b> 4 (	• «	4 (	٠-
		0	0			4	<b>D</b> (	۰ (	٠,	, .		•	4 0
		c	0			92	<b>.</b>	0 (	s (	→ (	<b>&gt;</b> •		<b>,</b> c
		c	0			33	0 1	٥.	۹:	۰ د	<b>.</b>	o a	2
		225	16			17	~ (	<b></b> (	3 °	۰ (	٠.	•	-
		0	0			22	۰.	<b>-</b>	n c	<b>, c</b>	<b>,</b>	9 0	• 0
		72	<u>.</u>			m,	<b>⊣</b> (	J C	o <b>c</b>	00	<b>.</b>	0	0
		0	D			10	•	<b>,</b>	,	ı	1		

			ATTENDIT 1-8	8 (cont'6)			
CETECT	15 Tolica	16 70 00	17	CATECT ATTC:S	15	16 70 GG	17
			•	PF XCS1	3.7	o	0
	, ,	3		000		3.5	~
20000	16.1	•	•	N THUS 3	10	c	c
AC 2 1014		, .	> 0	P.F.054	2	0	o
AU. 0.0		, c	: c	N1C.155	•	o	o
400 430	, ,	• •	· c	A CACS 6		~	o
6 C C C C M	5		<b>.</b>	Curasi	53	35	c
70044		) c	o c	PAR 35.9	۲22	67	ن
BULCES	47		•	PA*:059	~	0	o
	24	· ~		P3+050	~	c	O
	256	101	• 0	PERCE 1	16	o	c
	26	•	• ~	PH1062	<b>m</b>	o	ø
CEVCL3	(4)	63	. 0	POLCA3	25	•	c
C+1014	34	0		F0=064	-	c	•
	25	. ~	· ~	PUMPS	69	Ø	0
	13	•	0	990085	~	o	c
	13	· U	0	SPROKT	~	c	0
		159	c	Sanora	23	c	0
	6.5	•	7,1	Sa7069	æ	c	0
	13	•	c	0704Y2	32	•	0
220000	_	c	0	TAICTI	æ	o .	<b></b> (
ECU023	31	0	c	TURC72	ç	0	n
ECP024	93	22	8	<b>CNS073</b>	\$	ເາ	•
ELS:25	~	0	ຄ	LSP974	142	96	592
ETHUS	c	0	0	<b>CNK175</b>	160	0	25
- 14027	21	0	c	C24276	545	•	735
	145	0	•	URESTY	12	o	0
	4.5	20	~	VENO 79	46	o	11
680449	55	c	٠	VINC 19	587	232	0
GPC731	•	0	0	CBOSIA	193	n	\$
CUA022	1.3	0	0	YENGE 1	15	•	0
FA1033	•	0	0	YUGOR2	63	52	9
	c	0	0				
	25	•	n				
	373	99	563				
	*	123	m				
	٠,	, د	• (				
	16	• <	<b>y</b>				
	· -	) <b>(</b>					
	22	ۍ د	o <b>c</b>				
	205	· ;	*				
	O	0	0				
		147	0				
	36	0	c				
1.9	391	*	7				
•		o	0				
LB# 049	c)	c ·	0				
LBV359	o	0	0				

### APPENDIX II-A

COMPARISON OF A-SPACE ROTATED FACTOR LOADINGS:
ORIGINAL, TRANSFORMED, REDUCED, AND
REDUCED AND TRANSFORMED DATA, 1955 AND 1963

### **EXPLANATIONS**

O: Original Data Set (N = 82)

T: Transformed Data Set (N = 82)

R: Reduced Data Set (N = 56)

RT: Reduced and Transformed (N = 56)

Factor technique employed: Component Analysis Rotation

Criterion: Varimax

In the tables, only the loadings that exceed .30 are given.

APPENDIX II-A (CONTINUED)

		    L	**********			<u>9</u>	<u>ရ</u> ၃.	9 6	 2 &								Ť				-25	٦
																			<del></del>		<u>'</u>	4
	1013	is et					255		3.6											-		$\dashv$
		(+ m)					527													-	<u> </u>	4
TEAS		o m				5	-19	ű	74								-18				*	
III DEVEL		ម្លូក				t t	<b>1</b>	ą.	9							Š	Ŷ					
	1 1	at ra		-		27.0	E.S	;	- 83							-51	¥	22				
	1955	f- m				i,	현학	ď	7 4								-19			_	45	7
		o m	<del></del>			F	<b>L</b> :9	6	3 8							45-	ą			_	₹.	7
		F m										8			φ P				- 1	2	٤×	
		g: M										\$	 K		4				,	 8	38	_
	1963	F 0					<del></del>					53	ŧ,		7.7				9	Ŗ	\$2	
PORIE		00										8	ņ		'nκ	:			ı,	7	ಜ್ಞ	
2		F. w		·	<del>,</del> .				-			5	P		2				1	2 5	₹	
		Œ M							-			200	8			<u></u>			1	ę.	3	
	1955	t- 01							-		_	8	8		4	, I				_	F	-
		0 %						_			<del></del> -	\$	2	-	ş	ľ					Ę	:
<b> </b>	_	<u> </u>							_													_
		F 4	4.8		28	8				4	88	<u> </u>								7	R S	
	8	<b>2</b> 4 (V	6		25	23				3	543	K.								ş	3	
	15	<b>t</b> • H	E5		88	33				4	888	2								4	5 th	
POVER		0 4	ಭ		4	ŶŶ				\$	467	ķ.								7	ř	
-		<b>£</b> ; ∼	38		25	2 2				4	888	2									Ż.	
	\ \ \ \	K N			88	88	53			Ş	5 % 5	R								3	3	
	1955	( · ~	23		<b>7.</b> 8	38					8 27 6	K.									2	
		0 14			5,5	88.	-51			Ş	4 5	2								3	}	
PACTOR LAREES		ATATA OPERA	200 200 200 200 200 200 200 200 200 200	15.14				FETSE	200					CIYSO	Carrie	85.50	5:05	,		25	33	•
PACTOR.	TEAR	MATTO OF TATA	72	m .a	~	~ «	. v 3	14:	22	1:	221	<b>:</b> 23	3.5	ನಜ	ដ	2%	22	8	2#	N S	148	

APPENDIX II-A (CONTINUED)

				- 243 -	
		F-3	326		
		ρ; ₂	-89 -11-	<del> </del>	
	1053	[+ . <del>3</del>	89		
EIC		0 9	8,8	· · · · · · · · · · · · · · · · · · ·	
VI AGEIC		E =	-59 82		
		en	. 83		
	1955	(~ _3	ស្ន ខេត្ត	* ************************************	
		09	79		
		RT 10			Ą
	, E	뜨겁			8
	1963	13		<del>7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - </del>	-51
V URAID		래			8
5 A		E CO			చే
	1953	E 99	<b>ಪೆ</b>	8	8.
	έŧ	13			<b>ಪ</b>
	_	٥٥	93	4	8
		£ '9		<u>د</u> ا	8
	_	æs		<u>5</u> -	Š.
	1963	6.9		99-	Ş, <b>&amp; ⊀</b>
STC STC	İ	0.4		¥	2 <b>2 2</b>
IV WESTC		FF .0		ğ	8
	ŝ	<b>∝</b> ►		q	ę.
	1955	(+ N		-51	-7- 83
		0.4		<u> </u>	- 69 - 60
PACTOR LASELS		KIND OF DATA FACTOR CRIME	2 ANT ANT ANT ANT ANT ANT ANT ANT ANT ANT		200 200 200 200 200 200 200 200 200 200

APPENDIX II-A

### (CONTINUED)

	-J	T	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		····	-
		F: E	5			
	5	a :1	र्ज 🕏			(CONTINUED)
	1 26.1	1 3				000
*		on	¥ &			
TX VELYA		Fο	*			
	9	<b>8:</b> O	*			
	305	Hg				
		00	8			
<u>:</u>		E 1-			ኞ	
		æ 0.			<u>ኛ</u>	
	1963	E+ 6			*	
DIVER		្ង			ま	
HH		ដ្ឋ			ৰ	
	1955	e: II			\$	
	12	•• •			8	
		0 00			ዩ	
		<u> </u>		28.5	<b>4</b>	
	[ E	# S		23	<u>ځ</u>	
	1963	E+ 15	ĸ	ह		
E I	L	၀ရှ	rķ-	8		
VII ORIEN		Fi ~		Ł.K	: 	
	1955	5 38		38	<b>.</b> t	
	2	£1 9	*	á	a a	
		O P-	Ŗ	₽	<b>*</b>	
Sizes.		DATA PROSS	AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT AREAT	4 5 5 C	1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 de 1.00 d	3
PACTOR SANCES	553	MATTON OF DATA	**************************************			

APPENDIX II-A

(CONTINUED)

		_{នៈ} ដ	r 24) -	
		8.22	g.	COMPTINITE
	1063	}	φ. φ.	2167
S:		13 12		
Eccco I			¥2	
X		분임	2.2	
	1955	# CH	8	
		t 검		
		o 닭		88
		K:73	0	
	53	E13	50	58
	1963	• ដ	7-9-	
CERAD		ρ¢	ι ^Δ	85
¥		보다		-53
	5	F ET	•	-76 (40)
	1955	٠ <b>#</b>		(67) (76)
		្ដ		69
	-	er o	-4	
		n; b	∂.	
	1963	(+ S	۲۰ <u>۱</u>	
PCSTA		o [1		
× Σ		[: £	Ĉ.	
		때디	\$ <u>`</u>	
	1965	1 - 1 -	4	
		၀ ဌ	8	
FACTOR LASTLE	533	ACTIO OF DATA FACTO? ORDER	25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1

APPENDIX II-A (CONTINUED)

YEAR		1955	~ 			1963	_			្រុ	1955			1953		
KCHO OF DATA FACTOR ORDER	13	[+ <b>6</b> 0	KK 60	E -	0 &	F- 60	8.9	E so	0 17	단점	뜨貫	돧큐	0 ~	:- ~	a; m	RH
					-59		26						57		69	
3 DENST						-										
					-											
Obdail																
														-	_	
							-									
						_										
					_											
	_					-										
							_									
	8	6	4	4	8	6	9	40								
	ξ.	!		<u> </u>	<u>.</u>	_		,	74		4		á	4	2	77
									!		}		;	}	1	2
										29						
															_	
		_														
					<u>ب</u>	쟉						91-				
~ ·																
CTENO THE																
														-		

### APPENDIX II-B

### COMPARISON OF B-SPACE ROTATED FACTOR LOADINGS: ORIGINAL, TRANSFORMED, REDUCED, AND REDUCED AND TRANSFORMED DATA, 1955 AND 1963

### **EXPLANATIONS**

0: Original Data Set (N = 81)

T: Transformed Data Set (N = 81)

R: Reduced Data Set (N = 55)

RT: Reduced and Transformed (N = 55)

Factor technique employed: Component Analysis Rotation

Criterion: Varimax

In the tables, only the loadings that exceed .30 are given.

(CONTINUED)

6 92 4 HIGH III 8424 8438 2263 <del>ዸ</del>፠፠ቈ 38 22 95 ** II FOIPL 받ㅋ 88 88 \$ 10 mg 88 14 क्षे 83 88 I THUE **\$**@\$\$ ç 8 4 8888 8.5 & &. 7 %ಜ **೭**ಜ 25 23.88 83 PACTOR LABORS

1655 FW P P B G G G 160 F P P P

APPERDIX II-B

(CONTINUED)

- 248 -

62

The order appeared in original computer outputs.

APPENDIX II-B

(CONTINUED)

	r		ı													-		 1	_
		돲															96-		NUED
		KI V															95		(CONTINUED
	1963	ыm					_			_							-96		9
COM		0 10					-						-				96		
V NECOM		E S															86-		
	1955	8															66		
	-1	eιν															76		
		9															66		
		RT 7		-75				 								-57			
	3	6.20		-86				-68					-57			-65			
	1963	Ħν		7.2-				35					-52						
ECAID		0-7		88				79					26			52			
TA I		HT.		93															
	955	n:		8															
	-	ĦΜ		-92															
		O-3		96															
FACTOR LABELS		KIND OF DATA FACTOR ORDER	EYPOR INPOR	ECAID	DIFTP	TREAT	001100	Port	Post	Prote	1,003 1	ECOVE	בתרגו	CULVE	KD::00	Pocost	NECOM		
FACTOR	YEAR	KIND O	10	M-1	~	9	~	nco I	σ,	01	Ħ	12	13	77	15	16	11		

APPENDIX II-B (CONTINUED)

		ят 6	-84
	_	152	88
	1963	E+ <b>'9</b>	8
ISIT		0.0	98
VII VISIT		FF w	9,6
	1955	8: L	67
	=	터크	88
		-۱٥	æ
		FF S	-75
	3	7	8
	1963	e <b>-</b>	-13
NGO		0	뛿
VI CONGO		RT 6	83
	1955	e vo	8 ² 4 <del>2</del> .
	1	-	8
		0 9	8
FACTOR LABELS		KIND OF DATA FACTOR ORDER	ECCATO DIPPP DIPPP DIPTP TREAT TREAT POSTY POSTY POSTY POSTY CULAT CULAT CULAT CULAT CULAT COLOR BECON
FACTO	YEAR	KIND (	165 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 100 th 10

### APPENDIX III-A

### FACTOR SCORES OF FOURTEEN ROTATED ATTRIBUTE SPACE BASIS DIMENSIONS, 1955 AND 1963

### 1) EXPLANATIONS

Kind of raw data: Original Data Set (N = 82)

Number of variables in raw data set: 35

Factor technique employed: Component Analysis

Rotation criterion: Varimax

10,	, J		

					Ş	BEE 111-4 (cont'd)	(2,0					
•	T T	=	1111	ŧ	•	¥	AZI	AIII	H	H	Ħ	ä
ATTO: S	TO THE	PORTE	124.50	STC	ULAID	PC TC	ORIGI	DITER		POSTA		
AFGCT1	2.014433	4.0	5. 121307	-4.415452	-6-274223	-0.1 let 13	-C.124+CH	-2-35-123	1.1265	10:11:0	2007	
ALBIC 2	Destinate P	7	125525	-1.235751	-1.35275	-7.211-29	-12 to 10.				4 1 2	
۲	*c.1.7	-5.375515	-3.14e573	421441-1	-0.126227	5:5:10.1-	91,01101			7 1 2 1 2 1		
<b>P</b> C1 30 €	****	3365	1777 7 . Y . Y . Y . Y . Y . Y . Y . Y .	140414	10.201.0	E - 1 - 2 - 1 - 1	10.7224		144523	51101011		1.176-17
AUN.C. 9	C.1161.2	7:375	-0-14117	2435560	-0.115310	2.366764	-0.000	0.412134	00000000		-1. : -: : : 1	
ACC 100		-0-11-6-4	7. 30	1-1-1225	-6.155113	A-85.40	-C.341147	~	21712010	-2,117403	5. 1-1514	• ;
E 4400 a	5.503/70	-0-4: 75:0	C.59=1.0	1.28.5645	5.373353	-1.572233	-0.025119	113783.5-	-f.1.2.1/	5 . 2 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 .	-1.2-1741	7 2 2 2 2 3 4 5
55.70	.134-	1.5.6.4	.04536	-0.17,12=	C. 16.7550	C. 4776.1	-5.46.126	3.4215.43	-2-36 75 52	-3.5.5541	1. Licele	-1-1.1-10
	.174è	1.54(42)	2.025125	-1.275303	-C.278C21	-0.665075	2.101675	C.45+123	957U5T * C	-).5454.4	C. 127e23	5
113473	.143	C.\$9235	.36315	0.552166	-3.357370	F+5434-3-	2.5400e4	3.00038	5.66.17.5	41.	C. 63:11C	er (
C41.12	\$£185)*3	-J. A16416	-2.6d1122	C-33C331	-C. 34+3E5	-1.065145	1.580847	-1.591655		200750	-C - 1 - C - 2 -	
CEVOL 3	6.193078	0.500091	6.353104	-C.: 43ccl	-C. CA2506	C. 4 et 5 55	5.633743	5.415:23	7.14331	-1.25.637	10 1 4 m 7 m 1	
CHUIL	.16		2.2725.2	1.286623	-0.076505	-6.527653	-6.178254	C.56C444	-5.317267	7.13	6 4 4 5 5 4	S - 1. F - C
	-0.626465	2.173422	C. 504ce 5	-C. 28.7048	7. 991555	P 4 5 4 3 4 3 4	1.543450	0-411529	-C.C.48513	2.1361.5	C. 131255	
	2.103365	-1.032734	BU4-1-	-0.195536	-C. 49E93C	1.543652	2.552117	-C. BCE . 5 /	971220.5-	3 / J / J / J / J / J / J / J / J / J /		
נכרטו ג	C.1122'14	-0.75e921	. ·	18000000 180000000000000000000000000000	-c. lezel2	977575-3-	×16161.01	0.000000		6073-1-1	70111	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	0.36/30	201765 F	000000000000000000000000000000000000000	2017111	10 10 10 10 10 10 10 10 10 10 10 10 10 1			2 . 1 . 1	2		-7.57.573	7
•	21/5/201	(, (25)	2141710	75037	406 16 T = 3 = 1		1 1 1 1 1 1 1 1	504144	407564-1-	16.15	2, 713075	F15 1: 10
(2=27)	9577979	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	• •	40 1 34 4 Z	C. 121.15	( )	-0.44.66.0		15252E	-2.4115.0	1. 6(4375	150,450
12:12:12	2011130			3:3175.00 0.044.00	-C-16:746	-0.17456	995177		-C.1134el	-0.121712	£.195364	-1.7275-E
FC-1323	0-175615	-0.01P.26		1.385414	-7.C6862C	-3.7541-7	-6.675518		-2-151525	-2.14=77=	C. 17.42.23	Sec. 20. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1
EG#324	\$8533T*3	2.166 945	U	-1-342652	-0.133446	512231-5-	-C. F. 4739		62.134.1-	-1 - 2 3 4 C 4 3 -	-1.156 :22	0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ELS025	22323.	1574727		0.547554	554555-3	C+50+13	-0.796557		0-174523	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3. 320330	11 0
E1m326	.42£ 7E	372657.7-	-5.11:25	-C.352564	-0.507900	-0. 474179	-0-253959		51 76 12 - 7	331.500.50	0.6.0	51.2.7.1.
F14327	5.70 21.74	1.67875.	-	-C.c13324	-0.038403	-1.137537	7:5255:3-				17:27:11	10 10 10 10 10 10 10 10 10 10 10 10 10 1
FRE, 12.3	-0.432725	-0.451133	-6.453445	71142000	866612.0	871 X 20 1	65/163-3-		10.00	73757	12777	611111
Gre 32 3	191766.5		57/25:1-	C. 147751	136797-3-	10177101	# 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	241001-0	0.3(16.0)	20.15.00.0	-2-575431	0.354720
2017	K3/167***		5.1761.1	0.6.772	-0.096.12	100 1 1 1 1 1 L	-0.454243	4.4.36653	-5.171314	20021200	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.5-12:5
GLAN32	C.137393	-0.045177	C. 696120	2,903135	-0.104155	-0.200	-5.054427	9,10c127	6634 10.0	-5.111217	2.3114	-9.715-19
PAIC33	¿.C>6533	-3.647341	25946 1 • 1	9-762461	-0.34045	C.21: 5fc	-4.63.561	3.2312-0	L. 35 334	-6.46.43	131251	5 4 5 5 6 6
MCNC 34	5-147257	-C.E 7:324	. 7.55	C. 721.51c	-0.144504	-6.537:33	-0-126736	3.233740	1100000	1 2 5 4 T	5 5 CT 2 CT 2	7.547.6
FU1035	0.183560	1.55.6.1	. 50.7	3.7 5	E 7975 1-1-	1-141734	450707°0-	3.300410		1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		FC . 187 *
14JJ39	114622-7-	C. 22.22	2.723137		1.010015	1.580.73	0.67670	-3.476730	F 17 01 01	0 * N	770.007.00	
INS037	C.11.275	10/04 - 1-	1/07/4-7	25.06.75.5	1961961	5. 5712 3	# # 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.01			-0.1541.04	-1.7.4.
F # C   W	20 4 4 5 TH	はいまい はいい	9 44 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7572707	-3-171552	-0.366737	-0.555117	0.30050	12.161.0-	211613.6-	-3.315724	16.53.64.74
	~	2.177	2.157270	C. 752211	-C. 156127	C-124055	-0.341624	3.04.605.6	-2-20-0767	-2.2.5411	1,525452	1.27.769
15: 341	7	3.512371	-0.252341	-C.123637	-5.273418	0.26.962	1556570)-		-6.753054	-C. 36.75E	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 2 2 2 2 2
17A342	.14ce7	3	C.192548	5-564323	0.12e729	1.756759	£55176-7-	C.0E7433	C.69/0-0-	21173	100.00	
S+Cave	14146	٤	-C.3:737e	-0.24493	C. 33747C	1.3116.0	1.96132	1011111	77.4075	**************************************	100000000000000000000000000000000000000	F 21 - 5 - 14
75-36	2.4.14.2°	ß	5,557163	-1.56.145	5 5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		040000	10.000	-1.05.775		-2.532163	-1 30 30 3
KU WU W	いいがいりつ	7612125	. מילנים	C. 246312	F 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5 C 5	1.610164	1.00003	J.C1C47>	-15:06:3-	-0.154316-	C. 412474	9.565:33
1 100 th		27.55.57.74	6342	-6.636814	-0.3054C-	とうがいいと シー	1.765157	0.002207	C.574125	-3.255613	C- 16(42)	1.71%255
1.68049	2 2 4 6	C.03235	C.74c2b3	-6.356 647	-C. 485c64	1-5526-1	-0.554262	-1.0FCC27	-6.564013	-0. 3e.c.	0.10.518	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
BROG	-2375		•	-2.124cC3	-5.178782	-0.5ec 372	-0.455514	-0.857741	5.933773	·: '	5-562242	
L6V353	254€	-6.217512	1561-6-3	-1.5ec128	-0.132995	-1.012467	-0.675312	C-38C313	-2.462673	9.251713	-0-16564	10123117

						APPENDIX III-A (cont'd)	(cont'd)					
SHOT TORS	н	11 57 805	111	17	URAID	VI	VII	VIII DIVER	XI	X PGSTA	# Carrie	III SCLON
15: 13m	1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	45 L. 5	6.471530	3. 5:e:11.	Sec. 63.00	-5.46.4ES	6.457237	-0.045249	-:-1 1/11A	72.	-0.1 -1.5	
	-0.059071	0.372765	C.t: 4143	C-555115	-0.315463	0 * 4 F F B B C	0.146413	0.344733	7.7.4.2.64	7.5777	701116-1-	
	921254	-3.57.6213	-1.5. Je 55	-6.325920	25050100		U.536367	5.554562	2.12- 5:	-2.711135	-1	-f.311.22
450,434	F 4 4 1 3 4 7	-11710	-2.5.3142	-6-374552	\$5000000000		C. 637.55.3	0.3762.5	17% 27.00	0.7.1.2.2.1.7	Terrary .	£
		-100051722	5. 27 5675	3 17 1r	-(.174121		0.635635	0.005247	0.00	11 21		. 7 5 7 .
44.11	C. E. 1727	- 5.5.7.C. C.	-2.3.4.6.	-C. 70733c	C. 155286	-1.2546.3 -	-C	0.5717:15	20 (21.1)	54-11-	1. 74	
7 1 2 2 2	20000	3655 3655	C.41.1715	1 24 1 4 5 6 7	/ i. 17.	11.355-1-	1.251748	1.7:7:1:	112777	-1. 1-1232	1.1. 355 -11-	1:2:15
		40 105.0	1.077884	-1.7:17-4	36.54 34		-0.493352	-1-10ec 71	-5 7 5-	7.78 P. C.	( 5 : · · · ) -	1.
	207 E		0.4.4.7.7.4.0	1.650294	-2.1.4001		0.200552	C. 1 17c. 71	F [ 6 2 9 5 - 7 -	77.7	€ + 3 × 2 + 3 + 3	
P44.25.3	7.25.16	1991-1991	**! *** )	2000	-J. 2: 1: -4		#32cc7*0=	9:4609.0	カルナノ・フ・コー	£ 7.51 • 7 -	50.000	, , , , , , , , , , , , , , , , , , ,
Tel-35		-5-71117	C. 724927	1.17.4:23	25 - 1 a 1 - 3 -	- Uc. 3.2.5.5.1	-0. i /e5'sè	-2.0-2000	247542		2. 41.	
Fr1252	100	12.18.24.3	4440000	2.635.242	-0.347452		1.172674	-2.345545	Ec2134.74			C.4. 3.
6 45 173			1. 10. 1	644.75.	. 4		-1.12~325	1154 10	********	77: 7	1	161.131
					C4: 1+1-7		-C35427	17,5712				-1.7-1.4:
			***	2.128375	25-71-75	C. 7 24.273	-1.16.234	3.2.4:12	~ * * * * * * * * * * * * * * * * * * *	211.55.11	-3	
	4.		A	-2.43, -6.5	PE 7 4 5 4 5	- 2000 62-126	-0.563007	C. *** 176	-2.1.47.444	-3	5.17871.	1.77
	1 1 1 1 1 1		1. 1115	3: 51 15.	9.7.7.	1 2 7 7 7 7	.C. 735 75C		0.12.2438	-7-1:1:22	F - C 2	
	7	7 - 7 - 6		-1.777.1-	0.127516	- 1: ) /J _ 1 -	C - 30 62 C 3	~	( -1 : - +7 ;	-2	1.	1 - 1 1 1 - 1
C 97.147	43	2.27:17	1 - 1 - 3.4 6 7 5 1	- 7.11 6: 21	-C.11*212	- 2-72 ) " j-	C316 )2*3.		201-11-3-	21-01F-17-	5.7-0231	1.77.4.5
SVETAS	7	3.100.30	1:-:/:-::	-1.55.4.5	6623223	- 645010°L	-6.29.462		-2.11-3-	357 A	5.45:75 p	
14.747	2,7515.	11/11/01/	7,000	-21/2/11/2	36.00 2.00	173762 * 0-	2-141-3			-1.11.1.1-1	37777	, ,
	3		2.7-57.5	-:-7-3154	-0.0:11:1	- 21, 12, 13-	-1.673553			9. 55	-1-154-1-	
	***************************************		1-1-11-11-1	24 6 72 8 - 2	7 - C + 9 e - 3 -	(37,744,9)			700000	548.51		7 to 2 to 1
			P1 . 2 . 7 . 11 .	1.633	1.14.500	- 5217,7103-		-3.315.46	B 7	-11-1-1-		-1-1:17:7:
		5 . 17 1 -	24.222.23	2.5.5.5-	22774297			Se 5-4-53	6.517-7:	2:12:00	1 - 1 - 1 - 1	
	174 775 11	C3. 34 C.C-	75.4.4.5.	- C - 2 - 3 -	-C.65.33.7			1.27.5213	1,5541.5		1 . 2 5 - 2 2 4	£ 0.70 p. 3
	20.022	-4.3552.5	* C. 5 . 5 . 5 . 5 . 5 . 5	124-50-1	-9-145813	-[21/1/12] -	-6.121053	C. 55 \$4 . 5.	2628-8-0		50767.03	C.64 24.3
	652:210	-2.052513	・サケジュー・	C. A. 1.455	-C-213780	•	-0-412347	C.414F0.5	-0.267			C
	0.672344	C. 72.0357	140 E 46 12	-::-	10, 825553		1.502761	3.407253	-C-37,545	1-1.5	C. 735313	2-2-6-2
C#052	C-136224	20,525.0-	2.016.13	C. 16.77.3	-0.425473		2-15-112	-5-156171	2-133352		C. 611436	- C - H - C - C - C - C - C - C - C - C
VEV341	0.037565	226301-0-	2.35.35.3	-2,202154	-0.005542		*5. CO. C.	サゲンサング・コ	1.47.7.	77-7-1-6-	C. 1-1-04	· - 1 1 -
	450336.50	1.010554	C+36.25+3	3.252214	53878C5	2.7.5716 -	-0.783583	-1-143553	757979-1-	J? 5 T . I .	5.00031c	101

40 ¹	90.	,00	ocie	الع	٤																																			
HOT	BE.		DSA 19	-	-0.351kt3	-	•	5.611555	51176	55	1.40741	-1.11c>52	526	1.002523	-0.665357	25.37	0.415.40 -0.204031	757	12116.	1.747556	.151.	0240	-5-35/62/	35F#	-30E	-0.677675	20149													
		9	HIDA	1 4.1	-(.:.:sel	4384E	115426	-: "	50es	+55459*	6.002777	1 41	193	0.233330	1624	-0-13C51c	95055300	(.024691	-6.121310	-1.456715	3.636378	C. 52cd\$1	-1.009-65	-6.244114	7.10c644	-0-31cove	"													
		LPEDDIY III-A (cont'd)	MATTORS	PEXC51	A THIS 3	NEP-054	NIC 155	NG2056	PAKOSB	PANDS	PAROFO	PH1052	FC1063	590504	SAU266	SPND67	SHOUSE		TAIST	TURNIZ	USR374	UNK075	USA076	VENO78	V TN079	VENDE	706082													
		LIGHT	E S		126406-0-	-6-118231		-1.343651	0.405ch.0	-C.41E175	0.632507	: 5	.373	-C-145615	99	355.	-6.357235	.16255	****	-0.680029	626	.11374	-0.e5leel	36	17	4	-6.437223	5		3:	1.367310	196.		1.585744	5-86(231	-6.754630	7	-1.317711	0.36172E	
			H	-(.270432	-0-422179			EL 5503-0-	=	0.55		1450	27.	-C.Ce1521	.25	353	3		3450E	C.C23519	4000	5442	6-199128	7.56	1:03	19623103	195520-5	77	<i>.</i> •	£ 570		371.	9	-6-26:274	C.C74536	-1.784227		-0.347106	-3857	-(.196252
			BATTORS	AFG051	ALBUC 2	AUL DU 4	AUS DOS	BELON6	0	MICC	010408	PNO	CEVOLS	CHEST	CMTO16	CCL017	£10523	4 14	-	DCM322	EG#02	ELS025		FRNC23	N	M 4	GUA332		HC:035	1 NOC 36	INSOST IBN 334	180039	1RE343	174042	JAPO43	KONO	KCS046	LEBCAG	LAROAS	LAVOSO

	A DITA	2.132	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		157 - 5.412575		'		·			17c 16+7-						6 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			٠		273 -1-16			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, u		341 - 11: 4c			'			***************************************			748/2907 157		ere 1.5.7" '9	339	
	I II	1.64.2	25 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2						1 .5 .5		7 - 1 - 7	3-203	٥,	1. 1.	, u,	- 1.1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		•		<b>.</b>	278, 37 *C= - 12 4 f ( *C)					3515-615	7_1	725145 - 55.	4 7 4	15.			•		~1	10.10.2550 0.12.22.20 10.10.10.10.10.10.10.10.10.10.10.10.10.1	40 - 1 3 2 5 6 6 5 6 6 5 6 6 5 6 6 6 5 6 6 6 6 6	-0.56435a C.33467e		
	II S	(r)	1	. ~				-7-755155 2-3-3		- 757267				ロン・・コー   「日かけできるい。								-2-5-36-5			, J	<u>۾</u>			-5.012-72 -			m	,	***	, .	P - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	C- 10-1-	,	- 1 - 701 2 X - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	i	-0.221452	
	TITLE	D. 1 . 2 . 3	5-1-2-5	P. CON C. C.	0-110539	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			U.434540		) (1	C-191733		70077 - 7-	100013000	-0-111733	0.4754	2.416.324		1 ~	J. £ 6 ± 5 + 1	2.247734	1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(	2-3704.56	( ) ( ) ( )	22 2 2 2 2 3 3 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0.17"	-2-15-5012	7/150-1-		5.27275.5		2.4.2.4.2.5 0.1.1.4.4.7.7	C. 1. C. 7.3.3			547546	5-2-5-03	-0.046541	
3	TEATE	Ť		-0.455372		•	10/10/	[3425343]	'		6 10 40 4 C		1.542191	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5.531735	1/51/20	C.53 50.3	C.Coll#5	7.711107	-1.6.3.1.			1		2.364576			#1855 # J-	1.00 3267	C. 104604			•		リー・リー・フー (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	-C-6+8-3-	C.07C95d	C.17. 275	-0.2/2123	-1.001901	
PPENDIX III-4 (emt'd)	VI	7	421414154 B						•		6.05.04.0 6.05.04.0		1					111									•		7.5. 1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.		•		0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			1) * 1 to 1 to 1 to 1 to 1 to 1 to 1 to 1			•	1.302505	-1-41-6-5-	
APPENDED	1	-				5 -7 - 17 3 3 c 4							3 5.472+65	-0.275454	712850.0-	100 100 00 00 00 00 00 00 00 00 00 00 00	1 1 2 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5 12 12 13 C	26   45 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		4-42/360	1 -1.7+623			•			1010101				-		9241347	# 1		-6.593782	1.472564	-C. 13c351	2.403346	
	E E		5 -0.121427		•			7 -5.447427			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				71126-3-1				<b>S</b>	1 -2 - (26)12	- 1	1		91			22525-2- 1				P. 59. 2					(の) (の) (の) (の) (の) (の) (の) (の) (の) (の)				-0.211335		
	H	,	(7 C-592315	7	Ÿ	، ب	5 Les 30023		€,1		かい ない ない と こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ こ				15510000 6		•			(4.67.7.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					00000000000000000000000000000000000000				20 70 20 40 40 40 40 40 40 40 40 40 40 40 40 40				7 -5.66.6427			•		.,		Z-100000		
	HIE		15 -10129727		•	21-46-0				13 -C.215£56		1.7.4473		C 5.4.11	3.67.20	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	-2.875-			5-12-13-13-13-13-13-13-13-13-13-13-13-13-13-		-3.1.61.3		•	20110131		<b>C</b> )		ľ	-1.226731			- 12 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15			) I.f. / / / /				3 -3.63689		
3) 1969 lan	I SEC	ن	418362 C-15369	لها ار	(1	PEL 205 C.1757CC	#3034345 ACO		Ċ,	CA4221 2.061443	012 0-35353	54592°3 513	115 515	15 0.516266	65/100 413	22	020 05153			223 C-1/3235					27 27 27 27 28	5511 2 142	252 6.67-73			725 14640	237 C.11254		641774 64	341 3.45622	7-21311		1 + 1 K 2 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1	345 CallF923	347 5.03650	100 C.2447422	ĭ	
3) 19	MATTON	AFG	414	AUL	P GS	PEL	125	200	4	740	7 4		3	5	3			100.30	10.	ECU 223		ETH226	419	ALCOLOR.	اً وَ	043	50.03	1 1	1000	1.13	16.5337	P ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (	2 10	15.0	*1 6	4 (		100		できていません	60A67	

					ATTIMIT III-4 (cent'4)	4 (omt'd)					
I I	=	H	2	-	F	F	H	Ħ	H	Ħ	Ħ
200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	PANEL C	2157	-f. 3:25.5c	-C. 66 20.71	-6-34(15)	-3-7/1/25	SAAN TO	4 J. C 4	105TE	DI WELL
	-3.507(42	C.911163	1.214179	E. E. 5. 655	C. 34fc 73	-C.2(12/8	3.317528	-C.345413	100000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	9.87.55.54	-1.335867	C-10200E	C. 217126	7.574522	-C.214795	C.18e575	1.134540	6 3 3 3 2	43 1435	-2.2.113
	3-1555-5	-2.0935E5	2.485129	-C. 476354	-1.010FC7	-C.277615	-3.465324	C. 3272es	5.2277 te	S 34542	C. 142545
NICC55 3.175427	J.586145	C.725173	-5.71774c	-0.195566	-2.674845	-0.475538	5.167752	-C.201458	-5.7275.7	-1. 14. 3.4	Per mile
NC2CS6 CodyeSSE	-3.50sta	-2.40:650	0.59-145	C. let135	-1.358254	0.54753	3.034235	135501.3	1.294.397	-1.11.4573	100985-1-
	-1.425716	5.522266	2.101:22	250965-3-	-1-1,62015	-0.066333	3.34047	C. 31 :501	3.43.445	-2.023772	-1.5444 if
PAKARS DATESZEE	3.425632	C.672818	C.3c5936	J. 1343H7	6.657243	2-113622	<b>プロルごうちゃじ</b>	C-2197+5	2.( u2 = 3c	-3.50:111	50.31.573.5
PA1059 C.316575	3.7c3278	C.21e551	-2.289328	-0.592148	542158*5-	-0.272547	-5.121.9%	C. 114776	-2.ce417i	-0.147513	-0.16.170
FA3050 Cal72169	3.017357	C.353474	-5.535265	-3.252413	-1.175.675	-0.446532	2.138545	C+37+959	75.034°5-	C+1+4.43	-2.421119
	C.655517	C.024565	-2.513667	-5.329212	-6.555131	-6.53(579	0.0fe272	£ . 263330	-0.750015	4363 J. 103-	* 30 35 6 4 T-
	5.845235	6.522527	C.333258	-C. 786763	1.024166	-6.571024	-0.177511	-0.614356	-3.7C3F57	-0.105513	7.351983
•	-2.216259	C-2221C2	-1.5e4/35	-C. 321318	C.876556	-0.C73129	3.536470	-C.1F3793	-2-521691	555550*3	-C. 45 4.7
PC4064 :.153165	J. c. 3 2 53 7	C. 340391	-0.523746	-C. C15296	0.665425	-0.375426	0.255001	-6.151412	1513.4.6-	C. 1c1345	-0.1 E.
	-2.371233	5-274955	-3.445433	-0.435152	3.242454	-0.96/413	0.431543	-C. lee153	-C.212.05	C. 17re 25	C.142347
196255-0-955085	0.155949	C. 7255C5	-C.39472C	C. 7ht 356	-C. REPSE3	-1.033079	-0.782234	FF5740*0	20447525	F4080000-0-	-0.52, 413
SP-267 -C-241973	107533	0.676541	-2,751350	-6.475751	C. 3*c455	-0.677-12	0.942575	-0.375454	-0.544053	2,255136	3.12:0
	-1. 33c43è	-3-135100	2.46 5.56	0. 17.493c	-1.316256	C.476 3c1	-0.347154	-0.242273	2.305576	-5-135-55	-1.452571
Sw2369 C.5473CC	1612110	-2.306966	-2.225628	-5.051350	\$.C29122	-C.055928	-0.248289	-0.369333	£92923°5	190092-0-	3.4:76
	-3.502353	C.599354	-C.C95763	RESERVE U-	C* 115743	C.C47853	0.445132	-C. 582485	104951.73	-0.247743	20638.71
TAID71 -0.005915	0.729035	1.193568	3.075235	-c. ec 5123	-C.15c.10	-(.756530	0.230135	-C.103143	-C.74e 3e5	1. 225527	-0.166.23
TUK 372 -C.125225	5.71435	C.41233d	-0-148401	-C. 58C37C	5.22.232	1.347919	3.5ecc91	C.320453	2.357.55	(*174542	+2.11ac72
UNSC73 C.375336	U. >2e:10	-C.535051	0.525103	-C. 11C146	-C. d76679	-1-435214	-0.323564	-5.670.69	-2,500111	0.14.754	4. 43.2.
LS4274 -4-10522è	-1.7:4191	C-636527	-C.31 24 35	34C178	-C.685613	-C.37e1C1	0.641513	6.564373	-0.141553	C. 1.3:-c4	2.421.73
UN4375 -C. 373455	3.454576	-4.147554	C.072.342	C. 61c565	1.567751	C.Cot 337	C.C.5.7.1	20.34.7343	011419	-3.136703	1:40-4-7-
LS1075 -7. 11204	2. ye e e 32	-1.300242	2.130433	P. 071836	-0.748921	-C. 44.35C	3.254191	12+210-1-	C. 175103	5.1.5.3.6.	# LE * 7 * 1.
LPA:77 :.344:15	C. 5 24 56 C	4.040254	-1.(53035	-C-135C29	-0. 316.574	0.034931	0.140374	C.149247	-C. :74226	-C.19r734	-1.1-3.74
	3.655730	-C.11:3vb	-C.372182	-3.466262	-0.716155	0.046211	125541.0	C.125512	-6.475452	-2-151-2e	-7. Per 34
WTh.373 C.c.c.scil	165591-1-	2.661920	2.052474	-C. 4922CB	-0.156512	-0.c35329	0.121/54	0.451620	-3.44Ec56	-0.120193	-7.253675
VTS080 C.254943	3.594540	2.429049	6.562004	C. 175813	0.116909	C.\$17266	0.042430	-0.025125	-5.2115.6-	d. 5342C2	-C-130810
VEHORL C.CSEZEZ	0.665335	C.291815	-0.875574	5.412437	0.464628	-0.339250	0.385304	C.956263	1.335617	0.315144	-1.433175
TUGG82 C.Co1558	-1.364141	C.37154C	-0.504045	-C. 4987£2	0.402019	-C.673863	0.152647	-0.465274	17.047845	J. C#5723	1.510276

33 - 0.54732 - 0.5573 33 - 0.54732 - 0.5572 41 - 0.57736 - 0.5774 42 - 0.5774 - 0.5774 43 - 0.5774 - 0.5774 43 - 0.5774 - 0.5774
66 -0.403515 0.45450 65 -0.483515 0.28300 66 C.16130 0.2000 67 -2.401347 1.74540

### APPENDIX III-B

### FACTOR SCORES OF SEVEN ROTATED BEHAVIORAL SPACE BASIS DIMENSIONS, 1955 AND 1963

### 1) EXPLANATIONS

Kind of raw data: Original Data Set (N = 81)

Number of variables in raw data set: 17

Factor technique employed: Component Analysis

Rotation criterion: Varimax

Case: Dyads with China as the actor; e.g., CHN+Object Nations. In the table, only names of object nations are printed.

	2) 1955 DATE				H		F	-
100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100	OBJECT	H	Ħ	H			-	174
0.207933   0.352533   0.402630   0.207931   0.354524   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630   0.402630	MATICES	TRADE	POIN	MOL	ECATO			VISIT
0.17091 1.23550	160931	-1.21593B	C. 426304	F3 ( + 0 + 0 )	14.04	0.000	1910180	· · · · · · · · · · · · · · · · · · ·
-0.1000545 -0.286739 -0.4862117 -0.10001701 -0.100052 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.2000130 -0.20000130 -0.20000130 -0.20000130 -0.20000130 -0.20000130 -0.200000130 -0.200000130 -0.20000000000000000000000000000000000	LACO 5	0-176931	5756.	599017-3	1307	7376630		7.7.7.1
-0.223726 -0.826213 -0.101361 -0.23373 -0.101361 -0.101362 -0.862613 -0.2637313 -0.101362 -0.2637313 -0.101362 -0.2637313 -0.101362 -0.2637313 -0.101362 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.2637313 -0.26373313 -0.26373313 -0.26373313 -0.26373313 -0.26373313 -0.26373313 -0.26373313 -0.26373313 -0.2	6 300 M	-0.294545	-C.28c79	-5-442115	4			1.600
100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.000   100.	UL 004	-0.15362c	-9.82cc13	13/101	20.00	C		
-C.157222 -C.2546248 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.257313 -C.25	52650	-(-1500(5	-3.65.178	436830	10.00	10.151.20	7.7.7.	
-0.16356 -0.546248 -0.202313 -0.245361 -0.245303 -0.245361 -0.245303 -0.245361 -0.245303 -0.245361 -0.245303 -0.245361 -0.245303 -0.245361 -0.245303 -0.245361 -0.245303 -0.245361 -0.245303 -0.245361 -0.245303 -0.245361 -0.245303 -0.245361 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.245303 -0.2453	FLara	200011-3-	-3.50(5)5	-2-142743	-0-61403	365496	, , , , , , ,	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
-0.256.83 -0.4236.9 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -0.22816 -	100,001	-0.156350	-C-546-248		*/ · J = J • J =	3.512.5	-3-10-6-	-0-11-12:
-C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(35) -C.25(	PCOAF	-1.255c.13	126131-0-		-0.735432	2.236.03	5 2 2 3 5 6 1	-6-27-17
-C.55957 2.42760 -7.62478 -C.137415 -0.42416 -C.137415 -0.42416 -C.137415 -0.42416 -C.137415 -0.42416 -C.137417 -0.42416 -C.13741 -0.42416 -C.13741 -0.42416 -C.13741 -0.42416 -C.13741 -0.42417 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411 -C.13741 -0.42411 -0.42411	60070	-6.246350	1.431637		-0.354513	75 1 36 1 36	-2-6112.6	201125
-C.13495 -Q.454916 Q.282816 -C.221342 -C.447916 Q.282816 -C.221342 -C.447916 Q.282816	01040	-6.653597	2.127503		-1.5000e	Ca	1.52149)	-tecipit
-C.221242 -C.C4751C C.447235 -C.1770C1 C.111621 C.15731C -C.1770C1 C.17572 C.175737 -C.267255 -C.456255 C.175737 -C.267255 -C.456255 C.175737 -C.26725 -C.45625 C.175737 -C.26725 -C.47642 C.175737 -C.26725 -C.47642 C.176737 -C.26727 -C.47642 C.176737 -C.26727 -C.47642 C.176737 -C.26727 -C.47642 C.176737 -C.26727 -C.47642 C.176737 -C.26727 -C.47642 C.176737 -C.26727 -C.47642 C.176737 -C.26727 -C.47642 C.176737 -C.26727 -C.47642 C.176737 -C.26727 -C.47642 C.176737 -C.26727 -C.47642 C.176737 -C.26727 -C.47642 C.176737 -C.26727 -C.47642 C.176737 -C.26727 -C.476437 C.176737 -C.26727 -C.476437 C.176737 -C.26727 -C.476437 C.176737 -C.26727 -C.476437 C.176737 -C.26727 -C.476737 C.176737 -C.26727 -C.476437 C.176737 -C.26727 -C.476737 C.176737 -C.276737 -C.476737 C.176737 -C.276737 -C.476737 C.176737 -C.276737 -C.476737 C.176737 -C.276737 -C.476737 C.176737 -C.276737 -C.476737 C.176737 -C.276737 -C.476737 C.176737 -C.276737 -C.476737 C.176737 -C.276737 -C.476737 C.176737 -C.276737 -C.476737 C.176737 C.176737 C.176737 -C.276737 -C.476737 C.176737 C.176	AMOLL	-5-137455	-0.454515		1.050610	5-153359	1-325129	-1.1-005
-C.170cl D.111621 0.307312 -C.2103762 -0.445355 C.174112 -C.165c45 -0.7551174 0.3653174 -C.165c45 -0.7551174 0.3653174 -C.165c45 -0.7551174 0.365314 -C.165c45 -0.7551174 0.365314 -C.165c45 -0.7551174 0.365314 -C.165c45 -0.756245 0.365314 -C.165c45 -0.756245 0.365314 -C.165c45 -0.756245 0.365314 -C.165c45 -0.756314 0.365314 -C.165c45 -0.756314 0.365314 -C.165c45 -0.756314 0.365314 -C.165c45 -0.756314 0.365314 -C.165c45 -0.756314 0.365314 -C.165c45 -0.756314 0.365314 -C.165c45 -0.756314 0.365314 0.365314 0.365314 -C.165c45 -0.756314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.365314 0.36	A-1012	-6.661342	21414903-		£34063*3-	C-176847	- C - C - 1 - 3 - 5 -	35 15-7- 5-
C.   C.   C.   C.   C.   C.   C.   C.	FY913	-C.1776CI	0.111621		3.036626	C. 311314	C15436-3-	-1.64340
0.009293	4101H	-C. 21 837C	-0.62-554	C-15-117	0.334555	0. 251152	-1.1el 170	2231
	MT316	5.565283	-G. 64535	C.275535	-3,1577.81	-6.57 15 3c	1	15777
	11000	5925477	F1. 1 3 4 5 6 1 1	( . 076.775	0.0000	C. 257258	1	-1-21.5452
Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Control   Cont	81000	-6-136363	-0.561173	C. 144.32	100 000	571761	,	
1,100,000,000,000,000,000,000,000,000,0	01001		4.6	1 4866	-9-131756	C. 156. 73		135.74
C.   C.   C.   C.   C.   C.   C.   C.	31030	2	1.511021	•	-0.447433	C. 154912	-9-7472-6-	4.03 EC-2
C. C. C. C. C. C. C. C. C. C. C. C. C.	FN021		2,157,772		-0.4711E1	103503	4 C. Sec. 24.3	-C-57103c
	0000	£ 2595 J- J-	39736903-		-0.105.173	6,183149		0.00722
0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00	C.10.2	-C-10 E 2 P 4	-0.600.03	6.412724	-0.114762	C. 154.317	10000	124101-
1.056593	46.00	9.763769	-3-60.8742	5 100209	3.1:7:	2 2 2 2	135151	1000
1,050,53	2003	F. 1006.14	1947/4-0-	46.4376	-5-136013	1.10-1147		0.0172
	1.000	1.5050	-0-451817	0.790665	14.	C-101255	1.17=11.	2 646
1.646.062	1000	-C 365.2 F.	2.505236		-C-02*FE3	Ca. 14055	-C-107030	1 1 1 1 1
1.646.022	200	- 16 16 5 - 7 -	-7-4-451R		-1 -27/7-36	135757	ラウ・ラブ し	
0.055552 0.002844	06724	1.04066	3-183c36		275356-0-	C. 71713c	-C.4.7: -3	
	6000	0.75:52	-C. H. 4.570		1941.3-	-C- 354814	-0.615207	
	DC 31	-3.01524	-0.662:49		-0.11 4572	0.1931c4	13505 0-	J. 1387.1-
-6.56557 -0.451617 0.254466 -6.1076655 -0.577847 0.335191 -6.11361 0.54674 -0.243105 -6.42556 0.746540 -0.253573 -0.425564 0.56503 0.052573 -0.425564 0.55031 0.052573 -0.425564 0.55031 0.052573 -0.425564 0.5503140 0.352784 -0.425594 0.45646 0.653354 -0.42651 0.45646 0.653354 -0.42651 0.45646 0.245740 0.253354	CEC 44	-0.10.3-3	-0.261354	6.382362	-C-136154	C. 1Pecse	+0+110-3-	-C+14243-
	11213	-6.550557	-C.451c17	0.254466	-0.25e546	G.141255	1.17:7:4	35:353.3
	25.7.3	-6-10recs	-L. St 72.47	C.334191	173121	C. 1 . C. 52 .	3.551124	- 0 E 3 G T - 5-
	25.00	-Jec 5 Fe36	2-15234-5	-2.130061	-0.1121115	15555	-2.771.444	5-14-17-5
	27733	100010	0.544.14	-C.2441c>	-3-52-5	-L72727	502335.00-	2.62.6213
	18.5.97	-T. t. t. 1.30	6+140545	-2.535675	1.5.00.	353641-0-	. set 754.5	
	E & G C. #	-1.454563	-L. disas:	C.C. 5263	C. C. 4.23.3	3. Sta 340	-C. Sec 72.	
	180.33	4.4832353	-5-6:1 69-3-	6-2365-0	-0.151143	C. 2.2.5 450	57 . F . C-	
	C+0341	-1.122384	-2.569433	C-352757	-1.155317	( 12334P	C-3×2×6.	334420-3-
	19545	-1.546512C	40677.000	Sec 435 .C	- 3.0 - 177	5.156462	6.99.340	10.0000.3
	TADAZ	855451-1-	3572.1.3-	-9-291072	-1.7.23c2c	( . 12 1 3 5 4 3 5 4		3-5-25-3-
	SAPUAL	-4-202113	-1.561352	-1.127103	-6-104563	-0.203767	-1.13006	-L.J.41186
024695 -0.502146 0.318722026465 -0.502146 0.318722026465 -0.50496 0.2443140.227560 -0.50496 0.245747 -	440-D	-5-147559	-0.458445	10,00000-0-	-6-505-3-	3456	0.61	
029455 -0.502146 0.319722 140445 -0.456734 0.243124 1277560 -0.456330 -0.6545740 0.4545740	CV345	( - +2 +e 5 1	1.3326-6	(. 245.1.7	31.34.3.74.7	C. 135752	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(.302470
0.140445 -0.452576 0.243124 -0.243124 -0.227556 -0.4559340 -0.454540 0.467856 0.245440	105045	-(-038455	-3.502140	27.0816.0	-0+505-0-	-0.1771c7	C+ (1) (1)	J. 2000
######################################	A2347	2+140445	015259*0-	0.243124	-2.200751	C. Uc. 1295	1.6.2. 41	0.162323
0.007646 -0.395540 0.245740	ERCAS	055125-0-	-0.559300	-6.533555	0.145712	C. 321713	-1.523.03	747 6
	BAUAS	0.007650	-0-362560	3.245740	FC+ 747-5-	C-175595	1.17	See. 11
6.027106 -0.317322 C.234832	184050	6.027106	-0.317322	C.234832	-C-25243E	C-1737C0	1.9685	C-151-33

III			
0.299628 0.39713 0.299628 0.39713 0.299628 0.39713 0.29628 0.39713 0.23634 0.43713 0.23634 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.43713 0.4	IV V	22	TISIT
0.259288 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262 0.279262	0.00	,	1.417522
-0.1587C7 -0.259428 -0.259428 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.25946 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.25946 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0.259436 -0			-5-114365
0.299628 0.395189 0.395189 0.395189 0.395189 0.395189 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.3951882 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.395182 0.			C.537327
0.371358 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.395189 0.3			-C.635115
6.35.13.5 6.35.13.5 6.35.14.14.5 6.35.14.14.5 6.35.13.11.6.2 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4 6.35.13.4			-1.513365
C. 23524 C. 354145 C. 462243 C. 462243 C. 462243 C. 462243 C. 462243 C. 46243 C. 475243 C. 47524 C. 475243 C. 475243 C. 475243 C. 475243 C. 475243 C. 475243 C. 47524 C.	_	'	-0.315210
0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.359986 0.3			-L.Leace3
C. 6029 4 C. 834113 C. 847113 C. 847113 C. 847113 C. 847113 C. 847113 C. 847113 C. 847113 C. 847113 C. 847113 C. 84713 C. 84	-C.12c572 C.12 177		-C.503*10
0.478942 0.337573 10.337573 0.237119 0.237119 0.237119 0.237119 0.345349 0.445249 0.445249 0.445349 0.2337565			-c.222ets
0.33593 0.337543 0.4605443 0.2347119 0.2347119 0.3599846 0.3599846 0.3599846 0.456466 0.4564669		'	-5.5.4621
1.315743 -0.34401 -0.234401 -0.234401 -0.234401 -0.43403 -0.43403 -0.44403 -0.44603 -0.44603 -0.44603 -0.44603 -0.44603 -0.44603 -0.44603			3.70=35.5
0.46037 0.236411 0.236411 0.236411 0.236411 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.44140 0.			-0.1ct359
-C.3287119 -C.3287119 -C.3287119 -C.3287119 -C.3287119 -C.345384 -C.345384 -C.345384 -C.345384 -C.345386			C+116743
0.234719 0.234861 0.234861 0.3399844 0.3999844 0.3999844 0.39134461 0.444861 0.234645			454E13*5
0.236961 0.073696 0.07362 0.07362 0.395984 0.595984 0.66645 0.66645 0.66645 0.66645 0.66645	C++8+304 C+19c/01	2,342,34	-5-514965
0.41462 - 0.41482 - 0.41482 - 0.51482 - 0.51482 - 0.51452 - 0.51452 - 0.41452 - 0.41452 - 0.414533 - 0.41452 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.414533 - 0.41453 - 0.414533 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453 - 0.41453		•	-3.35269n
0.477822 0.039934 0.395334 0.395334 0.395334 0.48450 0.48450 0.48450 0.48450 0.48450 0.48450 0.48450 0.48450 0.48450 0.48450 0.48450 0.48450 0.48450 0.48450	•		-C.20512c
0.072CC 0.39902dd 0.39902dd 0.3175co 0.3175co 0.4445040 0.4445040 0.260260			-6.1111352
0.399884 0.394845 0.394845 0.444859 0.444859 0.444859 0.444859 0.444859 0.444859	J.673565 0.243146	Ť	2.412123
C.345334 C.444134 C.217506 C.641402 C.641402 C.641402 C.6413593 C.6413593 C.6413593 C.6413593 C.6413593 C.6413593	_		-5.156342
C.434134 -C.17566 -C.9561462 -C.445533 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.464245 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46424 -C.46		164 -5-205145	-5-226 142
-0.21750- -0.401402 -0.401402 -0.401402 -0.401404 -0.401404 -0.401404 -0.401404			-1.210572
- C-919261 - C-611462 - C-647533 - C-473503 - C-473503 - C-673503 - C-673503 - C-673503	-1.109700 0.25404	C4 -0.152833	-1-55234
C.61402 -C.475373 -C.464245 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.473597 -C.47359		44 -5.531051*	Packetage .
- C.445933 - C.464245 - C.473597 - C.473597			0.065556
0.464245 -0.473507 0.260265 0.237474	0.53/941 0.156950		-(.437241
0.260269		Ť	-5.454323
0.263269	5-21-115 -0.245422		(.13=555
0.237+74	•		C.154230
-3-5236AL		90 1.972463	-1.156567
-0.363696	-C.77CC53 0.C0825C	SC 3.803084	-C.326925

CBJECT							
IN TICES	I	H	H	IV ECATO	W.C.C.	71217	11 8
	0.0 41354		-1-1-2513	-1.24 les	16.111.2-	7 4 4 2 6 14	1.500,043
	5.342753		-6-3-0-3-	30-64-37		1.7.5.2.4	6.516367
ARGCOS	-C.c43161	0.275287	C. 710447		5162720-	150/02 me U = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	-0.865203
	-1-673361		2 (2) (2) (2)			4 mm	-1.000017
BELLUGG	0.00000		5.4.5/F:		-74 57/163		-1-6752-7
	-6-132521		5.757:13	5-17-2-3	I-1-1-1	-1.14013+	
	1.070167		#52350°)	-1.5.7-1	56 53 50 50	\$ 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
<b>611369</b>	C.138356		+ k = 0/1/2 = 1	1 242 / 27	10 - 20 - 400 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-1.41.514.	í
	C-25.4507		77277	2.324.02	5.37.70.31	2 3 2 2 2 3	
	-0-120763		1-102849	• ا ا ا	-5.371241	:: 1::-5	F
	C.286264		-C. 720434	52	-6.23 14.13	2 + 7 - 2 - 2	7
	-C-115824		2.172331	5-1080-0-	-9-27-143		ĭ
	-3.252788		0.725629	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		0.2-6151	5 4 7 4 7 4 4 5 4 4 5 4 5 4 5 4 5 4 5 4
10101	-0.417561 -0.427561		f.0000243	10.000	いたのかかい *ラー	C * 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, ,
	E-26.2.2.			77			
_	5777150		-1.5,5273	31. 7. 6-	ツェイトリル ・コ	Dark Cong	
	-13.532462		-1-04-51-	-2.37.30	545,57.0-		
	-n.214161		C.7115.75*	-5. less.	564457.	-1.6 1111	
EC11023	0F88000-0-			. 13838	67175		
	\$ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-1.241-55 - 2111324	, , , , , , , , , , , , , , , , , , ,	6711110	3 4 4 4 5 5	
E14126	**************************************		02.72.2	1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	76.37		1 22 07 -1-	21 1 4 3 3 4 4 4 1 1 1	70		
	-2.216924		1455 45.	24070110		3.0300.00	
	-4-150172		13.610.1-		2 1364	10000	7 J
	-0.467e17		2.000.72	1 * 1 * 1 * 1 * 1	1.7		
61.031	-0.343646 -1.5.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.		10 4 10 10 10 10 10 10 10 10 10 10 10 10 10				
	-0.315072		0.716727	7, 7	46.000	- 1 - 6 - 6 - 1 -	
			6.3746.76	-3.12 (-22	-1. 124522	FE 14 1 1	
	-20.946.55		-1.5 Picz 3			-11:00	71.50.00
۰.			33,030.1	201001.	7 7 7 7 7 7		** ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (
TECO OF	1.3652.5		5671173	4: (4) (1)	0.3 0.00	7 7 7 7 7 7	
•	-0.432203		-).074641	21-51 1-15-	, F	- C- C- C- C- C- C- C- C- C- C- C- C- C-	
	-1.351155		5 C 9 4 C 3 +	-0.11:333		130302001	6-25.2474
	-2-42 H254		6.17.72	42511.6-	T 1 18.0 5 50	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1: 1: 73. 1-
	466006000-		C. 0.5132	-C-111:17		していない。	-1.4
1890-3	.5		7.7247.1		3 2 1 1 C 1 .		676460-11
440 CON	-4-300 180			1 2 2 2 2 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	1 2 2 2 2 2		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
KUSCAU	100		157070	1000 F 40-	105121		
140041	-0.227147		5-140163-	-0.145507	2.74.557	はずれずりい。	1.0023.063
E 5048	. 35 66 7		0.572.61	1000000	177		100000
184350	-0-30e124 -0-31e483	0.12c54	C. 7145Et	-C-1723457	-0.152262	), , , , ,	1.376383

			LIMETA	L'TERDIX III-8 (ont'4)	2			
SALECT	-	#	H	2	•	H	Ħ	
TICES IN			Tele.		MECON	VISIT	2000	
MEXIST	-0.00000	0-374543	C. 17 42:3	-C-11:23c	-(-215156	155m2.7	-C./1354e	
NEPOS2	-6-231466	0.351236	-2.92E742	-C.435051	-9-004904	1.047350	1-15:162	
NTM553	C. 4C 9371	-6.910730	-1.473451	-0. 7dC 401	-C- 33-463	-1.5elr4e	-6-2452-3	
NEw354	0.232681	0.251422	C. 454e13	35346e	-9.101155	5.77.765	-C.CG1131	
NIC.055	-7.326665	0.1.1037	C.711410	-6.155342	-0-103757	-5-223365	C.552834	
NC+CS6	-0.454365	3.425413	-1.162560	-0-474322	-6.276:12	-0.1cel !v	-0-1:0:53	
CUTC57	6.27.565	C.41676C	-1.487671	0-147151	-0-238-63	-lelent?	C. 51. 17c	
PAKUSS	2.023340	-0.15ec17	C.333543	-1.3vci.2	-U-147C13	1-6013-1	1.176435	
PANUSS	-0.341962	3.146135	C.692572	-6-12123	-C. 15546C	Sec 3500 3-	f.531c35	
PAPCED	-6.414725	6.450654	-1.456173	-0.344055	-2-171452	-5.224674	6.445.363	
PERO61	-C.32EC47	C.24¢ 10C	C.067414	-C.(=3033	-0.204294	-0.146136	-C.145928	
PH1562	-0.355472	9.263599	C.660721	167150-0-	-0.136035	-C.154626	C.223vi6	
PCLU63	-1.555639	3.271625	-1.583869	-C.23407E	-C. 53e14C	Canadaches	-1.737662	
PCR064	-C.31e155	3.252155	C.052440	-0.049932	-3.157656	-2-17/7155	-C.45El21	
RU#365	C.7c.329	0.156663	-1.952753	-3.523427	142454-3-	234554-2-	-5.725742	
SAUGES	-C.79:341	C.lcetal	C.737674	-0.135.51	-0.096263	-5.228523	1.463773	
SPRUGT	-5.357665	3.25576	5.644614	-0.025254	-C 74557	-9.1c:555	-(.e5153C	
Shinger	-6.625946	3.345193	-1.674542	0.245425	-0.457500	-2.236716	-C. 52 1c29	
SAZCES	-6.635692	-6.005342	C.443554	-9.215245	-C.236376	113126-3-	-0.561435	
SVACTO	-C. 3356EC	0.154433	-6.822647	C-C67211	-0.291174	-C.3C.22.P	C-3006-3	
TAIGTL	-6.307275	0.173665	C.1127ce	-6.123726	-0.126755	-0.20.735	C.c.7:525	
10001	-C. se 7502	6.225759	C.07632C	-9.07112e	-6.275572	-D.1.5614	212463-2-	
UNSO 73	-0.296485	0.149662	C. 73C114	-0.03c51c	-C. 201345	-0-0-0-12	-6-134055	
USACTA	C.1C7112	-7.771513	-1.564514	-C. 99 i 56.E	C. 5327+3	-6.414217	1-140567	
UNK 375	C.612932	-5.32C12+	-1-141323	-C.772#21	-0.018512	-f. 0+0.216	-C.92667e	
USAU76	-0.428240	-C.36CC37	1.243755	0.167502	6-714763	9.21' e51	-6.960623	
CPAGTT	C.C.5452	S-10374C	C.354757	-C-26351C	-0.152432	-C.173536	4955500	
VENO78	-6.251494	0.364143	C. 71 7442	-0.101753	-C. 053t.31	-0.0707cb	-5.531763	
VINC 19	1.126705	C-271C21	-5.571353	3.225655	C. 42E765	C.19762P	1.022524	
CHOSTA	-0-134669	J.41275C	C.807C12	-6.361053	6. 52¢185	-6.6146	-6.341136	
VE-NOB1	-C.7C6618	0.053194	-C.389343	0.532534	-6.181302	1-1252-3-	1.055442	
VUC082	-0.413951	6.575615	-1.137463	-C-325326	C. 37e512	-0.2353r0	-0.307502	